from megatron.core.tensor_parallel import mappings from tests.test_utilities import Utils import torch def test_CopyToModelParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.ones((1)).cuda()*Utils.rank output_data = mappings._CopyToModelParallelRegion.backward(None, input_data) result = torch.ones(1).cuda() result = result * 22 if Utils.rank >= 4 else result * 6 assert(torch.equal(output_data, result)) assert(torch.equal(input_data, mappings.copy_to_tensor_model_parallel_region(input_data))) assert(torch.equal(input_data, mappings._CopyToModelParallelRegion.symbolic(None, input_data))) Utils.destroy_model_parallel() def test_ReduceFromModelParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.ones((1)).cuda()*Utils.rank output_data = mappings._ReduceFromModelParallelRegion.symbolic(None, input_data) result = torch.ones(1).cuda() result = result * 22 if Utils.rank >= 4 else result * 6 assert(torch.equal(output_data, result)) input_data = torch.ones((1)).cuda()*Utils.rank assert(torch.equal(mappings.reduce_from_tensor_model_parallel_region(input_data), result)) assert(torch.equal(input_data, mappings._ReduceFromModelParallelRegion.backward(None, input_data))) Utils.destroy_model_parallel() def test_ScatterToModelParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.rand((8,4)).cuda() output_data = mappings.scatter_to_tensor_model_parallel_region(input_data) req_dim = int(Utils.rank%(Utils.world_size/2)) assert(torch.equal(output_data, input_data[:,req_dim].reshape((8,1)))) output_data = mappings._ScatterToModelParallelRegion.symbolic(None, input_data) assert(torch.equal(output_data, input_data[:, req_dim].reshape((8,1)))) input_data = torch.ones(8).cuda() * Utils.rank actual_output_data = mappings._ScatterToModelParallelRegion.backward(None, input_data) expected_output = torch.cat(( torch.ones(8)*0, torch.ones(8)*1, torch.ones(8)*2, torch.ones(8)*3)).cuda() if (Utils.rank >= 4): expected_output = expected_output + 4 assert(torch.equal(actual_output_data, expected_output)) Utils.destroy_model_parallel() def test_GatherFromModelParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.rand((8,4)).cuda() req_dim = int(Utils.rank%(Utils.world_size/2)) output_data = mappings._GatherFromModelParallelRegion.backward(None, input_data) assert(torch.equal(output_data, input_data[:, req_dim].reshape((8,1)))) input_data = torch.ones(8).cuda() * Utils.rank actual_output_data = mappings.gather_from_tensor_model_parallel_region(input_data) expected_output = torch.cat(( torch.ones(8)*0, torch.ones(8)*1, torch.ones(8)*2, torch.ones(8)*3)).cuda() if (Utils.rank >= 4): expected_output = expected_output + 4 assert(torch.equal(actual_output_data, expected_output)) assert(torch.equal(mappings._GatherFromModelParallelRegion.symbolic(None, input_data), expected_output)) Utils.destroy_model_parallel() def test_ScatterToSequenceParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.rand((8,4)).cuda() req_dim = int(Utils.rank%(Utils.world_size/2))*2 output_data = mappings._ScatterToSequenceParallelRegion.symbolic(None, input_data) assert(torch.equal(output_data, input_data[req_dim:req_dim+2, :])) output_data = mappings.scatter_to_sequence_parallel_region(input_data) assert(torch.equal(output_data, input_data[req_dim:req_dim+2, :])) input_data = torch.ones(4).cuda() * Utils.rank output_data = mappings._ScatterToModelParallelRegion.backward(None, input_data) expected_output = torch.concat(( torch.ones(4)*0, torch.ones(4)*1, torch.ones(4)*2, torch.ones(4)*3)).cuda() if (Utils.rank >= 4): expected_output = expected_output + 4 assert(torch.equal(output_data, expected_output)) Utils.destroy_model_parallel() def test_GatherFromSequenceParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.ones(4).cuda() * Utils.rank output_data = mappings.gather_from_sequence_parallel_region(input_data) expected_output = torch.concat(( torch.ones(4)*0, torch.ones(4)*1, torch.ones(4)*2, torch.ones(4)*3)).cuda() if (Utils.rank >= 4): expected_output = expected_output + 4 assert(torch.equal(output_data, expected_output)) assert(torch.equal(mappings._GatherFromSequenceParallelRegion.symbolic(None, input_data), expected_output)) input_data = torch.vstack(( torch.ones(4)*0, torch.ones(4)*1, torch.ones(4)*2, torch.ones(4)*3)).cuda() class Ctx: tensor_parallel_output_grad = True output_data = mappings._GatherFromSequenceParallelRegion.backward(Ctx(), input_data) expected_output = torch.ones((1,4)).cuda() * 4 * int(Utils.rank % 4) assert(torch.equal(output_data[0], expected_output)) Utils.destroy_model_parallel() def test_ReduceScatterToSequenceParallelRegion(): Utils.initialize_model_parallel(4,2) input_data = torch.vstack(( torch.ones(4)*0, torch.ones(4)*1, torch.ones(4)*2, torch.ones(4)*3)).cuda() output_data = mappings.reduce_scatter_to_sequence_parallel_region(input_data) expected_output = torch.ones(4).cuda() * 4 * int(Utils.rank % 4) assert(torch.equal(output_data[0], expected_output)) assert(torch.equal(mappings._ReduceScatterToSequenceParallelRegion.symbolic(None, input_data) , expected_output.reshape((1,4)))) input_data = torch.ones(4).cuda() * Utils.rank output_data = mappings._ReduceScatterToSequenceParallelRegion.backward(None,input_data) expected_output = torch.concat(( torch.ones(4)*0, torch.ones(4)*1, torch.ones(4)*2, torch.ones(4)*3)).cuda() if (Utils.rank >= 4): expected_output = expected_output + 4 assert(torch.equal(output_data, expected_output)) Utils.destroy_model_parallel()