import os import torch import megatron.core.parallel_state as ps class Utils: world_size = torch.cuda.device_count() rank = int(os.environ['LOCAL_RANK']) @staticmethod def initialize_distributed(): print(f'Initializing torch.distributed with rank: {Utils.rank}, world_size: {Utils.world_size}') torch.cuda.set_device(Utils.rank % torch.cuda.device_count()) init_method = 'tcp://' master_ip = os.getenv('MASTER_ADDR', 'localhost') master_port = os.getenv('MASTER_PORT', '6000') init_method += master_ip + ':' + master_port torch.distributed.init_process_group(backend='nccl', world_size=Utils.world_size, rank=Utils.rank, init_method=init_method) @staticmethod def destroy_model_parallel(): ps.destroy_model_parallel() torch.distributed.barrier() @staticmethod def initialize_model_parallel(tensor_model_parallel_size = 1, pipeline_model_parallel_size = 1, virtual_pipeline_model_parallel_size = None, pipeline_model_parallel_split_rank = None): ps.destroy_model_parallel() if not torch.distributed.is_initialized(): Utils.initialize_distributed() ps.initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, virtual_pipeline_model_parallel_size, pipeline_model_parallel_split_rank)