import importlib import sys import torch.multiprocessing as mp # A loader is a python file with at least two functions # - add_arguments - takes in a parser and adds any arguments needed # - load_checkpoint - takes in the queue and parsed arguments # A saver is similar but has save_checkpoint instead of # load_checkpoint # The loader and saver process are each given a queue, the loader # should load the checkpoint and send the weights in messages in the # following order, the saver should receive them in this order and # save the checkpoints. A message consists of a python dictionary with # a "name" for error checking and an entry for each tensor as # indicated below. Note that the weight sent over the queue are the # full model weights, nothing split. # If the loader ever sends "exit" to the queue, that means something # went wrong and it is exiting. # - Metadata Namespace with the following attributes: # model_type - GPT, BERT, T5, etc. (Part of protocol to allow this to be deduced later instead of given on command line) # num_layers - Number of transformer layers # hidden_size # seq_length # num_attention_heads # max_position_embeddings # tokenizer_type # iteration # params_dtype # bert_binary_head - Used only if model_type is BERT # previous_tensor_parallel_size - Optional # previous_pipeline_parallel_size - Optional # true_vocab_size # make_vocab_size_divisble_by # consumed_train_samples # consumed_valid_samples # messages # { # "name": "embeddings" # "position embeddings" # "word embeddings" # } # (for each transformer layer): # { # "name": "transformer layer N" # "input layernorm weight" # "input layernorm bias" # "qkv weight" # "qkv bias" # "dense weight" # "dense bias" # "post layernorm weight" # "post layernorm bias" # "mlp l0 weight" # "mlp l0 bias" # "mlp l1 weight" # "mlp l1 bias" # } # { # "name": "final layer norm" # "weight" # "bias" # } # if present (i.e. for BERT): # { # "name": "pooler" # "weight" # "bias" # } # { # "name": "lm head" # "dense weight" # "dense bias" # "layernorm weight" # "layernorm bias" # } # { # "name": "binary head" # "weight" # "bias" # } # - "done" def load_plugin(plugin_type, name): module_name = f"checkpoint_{plugin_type}_{name}" try: plugin = importlib.import_module(module_name) except ModuleNotFoundError: module_name = name try: plugin = importlib.import_module(module_name) except ModuleNotFoundError: sys.exit(f"Unable to load {plugin_type} plugin {name}. Exiting.") if not hasattr(plugin, "add_arguments"): sys.exit(f"{module_name} module is not a plugin. Exiting.") print(f"Loaded {module_name} as the {plugin_type}.") return plugin def main(): import argparse parser = argparse.ArgumentParser( description="Megatron Checkpoint Utility Arguments", allow_abbrev=False, conflict_handler="resolve", ) parser.add_argument( "--model_type", type=str, required=True, choices=["GPT", "BERT", "falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"], help="Type of the model", ) parser.add_argument( "--loader", type=str, default="megatron", help="Module name to load checkpoint, should be on python path", ) parser.add_argument( "--saver", type=str, default="megatron", help="Module name to save checkpoint, shdoul be on python path", ) parser.add_argument( "--load_dir", type=str, required=True, help="Directory to load model checkpoint from", ) parser.add_argument( "--save_dir", type=str, required=True, help="Directory to save model checkpoint to", ) parser.add_argument( "--max_queue_size", type=int, default=50, help="Maximum number of tensors in the queue", ) parser.add_argument( "--no_checking", action="store_false", help="Do not perform checking on the name and ordering of weights", dest="checking", ) parser.add_argument("--bf16", action="store_true", help="force bfloat16 weights") parser.add_argument("--kv_channels", type=int, default=None) known_args, _ = parser.parse_known_args() loader = load_plugin("loader", known_args.loader) saver = load_plugin("saver", known_args.saver) loader.add_arguments(parser) saver.add_arguments(parser) args = parser.parse_args() queue = mp.Queue(maxsize=args.max_queue_size) print("Starting saver...") saver_proc = mp.Process(target=saver.save_checkpoint, args=(queue, args)) saver_proc.start() print("Starting loader...") loader.load_checkpoint(queue, args) print("Waiting for saver to complete...") saver_proc.join() if __name__ == "__main__": main()