global { ducttape_output=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_llama2_all_20B repo=/mnt/data/jpombal/multilinguality_megatron external_model_dir=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_llama2_all_20B/mc4_wiki_checkpoints model_path=/mnt/data_2/cache/models--meta-llama--Llama-2-7b-hf/snapshots/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9 tokenizer_path=/mnt/data_2/cache/models--meta-llama--Llama-2-7b-hf/snapshots/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/tokenizer.model dataset=(Dataset: en de fr es it nl pt ru zh ko en_wiki de_wiki fr_wiki es_wiki it_wiki nl_wiki pt_wiki ru_wiki zh_wiki ko_wiki) dataset_path=(Dataset: en=/mnt/data_2/shared/tower_llm_data/en/data es=/mnt/data_2/shared/tower_llm_data/es/3/0000.json.gz de=/mnt/data_2/shared/tower_llm_data/de/2/0000.json.gz fr=/mnt/data_2/shared/tower_llm_data/fr/1/0000.json.gz nl=/mnt/data_2/shared/tower_llm_data/nl/0000.json.gz pt=/mnt/data_2/shared/tower_llm_data/pt/0000.json.gz it=/mnt/data_2/shared/tower_llm_data/it/0000.json.gz ru=/mnt/data_2/shared/tower_llm_data/ru/6/0000.json.gz zh=/mnt/data_2/shared/tower_llm_data/zh/0000.json.gz ko=/mnt/data_2/shared/tower_llm_data/ko/0000.json.gz en_wiki="" es_wiki="" de_wiki="" fr_wiki="" nl_wiki="" pt_wiki="" it_wiki="" ru_wiki="" zh_wiki="" ko_wiki="" ) is_hf_dataset=(Dataset: en=True es=False de=False fr=False nl=False pt=False it=False ru=False zh=False ko=False en_wiki=False es_wiki=False de_wiki=False fr_wiki=False nl_wiki=False pt_wiki=False it_wiki=False ru_wiki=False zh_wiki=False ko_wiki=False ) threshold=(Dataset: en=516 en_wiki="" es=275 es_wiki="" de=611 de_wiki="" fr=322 fr_wiki="" nl=649 nl_wiki="" pt=257 pt_wiki="" it=332 it_wiki="" ru=334 ru_wiki="" zh=2041 zh_wiki="" ko=198 ko_wiki="" ) datamix_weights=( DataMix: mc4_wiki_uniform=( Dataset: en=67 es=67 de=67 fr=67 nl=67 pt=67 it=67 ru=67 zh=67 ko=67 en_wiki=33 es_wiki=33 de_wiki=33 fr_wiki=33 nl_wiki=33 pt_wiki=33 it_wiki=33 ru_wiki=33 zh_wiki=33 ko_wiki=33 ) mc4_uniform=( Dataset: en=100 es=100 de=100 fr=100 nl=100 pt=100 it=100 ru=100 zh=100 ko=100 en_wiki=0 es_wiki=0 de_wiki=0 fr_wiki=0 nl_wiki=0 pt_wiki=0 it_wiki=0 ru_wiki=0 zh_wiki=0 ko_wiki=0 ) ) # number such that final tokens for each language are around 1B n_tokens=(Dataset: en=1000000000 es=833333330 de=833333330 fr=833333330 nl=833333330 pt=833333330 it=833333330 ru=500000000 zh=13888888 ko=250000000 en_wiki="" es_wiki="" de_wiki="" fr_wiki="" nl_wiki="" pt_wiki="" it_wiki="" ru_wiki="" zh_wiki="" ko_wiki="" ) min_perplexity=50 size=(Size: 7 13) log_interval=1 save_interval=635 eval_interval=635 train_steps=12700 lr_scheduler=cosine warmup_steps=127 lr=3e-5 lr_min=3e-6 weight_decay=0.1 n_gpus=8 gpu_ids=0,1,2,3,4,5,6,7 tp=(TP: 1 2 3 4) pp=(PP: 1 2 3 4) micro_batch_size=4 grad_accum_steps=12 vocab_size=32000 cpu_workers=16 wandb_run_id="llama2_7B_20b_base_vocab_uniform_cleaned_ppl_thresh_516_275_611_322_649_257_332_334_2041_198_and_wiki_33" wikipedia=False freeze_layers="" posterior_tokens=False n_posterior_tokens=False eval_iters=1 is_parallel=False lp="" }