import gzip import json import sys import pandas as pd from pathlib import Path l = sys.argv[-1] def _close_when_exhausted(file): with file: for line in file: yield json.loads(line) def open_read_cleaned(filename): file: TextIO = gzip.open(filename, "rt") # type: ignore return _close_when_exhausted(file) def write_json_lines_to_gzip(filename: str, data): try: with gzip.open(filename, "wt") as f: for item in data: json_line = json.dumps(item) f.write(json_line + "\n") finally: f.close() # Ensure file is closed even if an exception occurs def write_json_lines(filename: str, data): try: with open(filename, "w") as f: for item in data: json_line = json.dumps(item) f.write(json_line + "\n") finally: f.close() # Ensure file is closed even if an exception occurs TEST_SIZE = 10000 TRAIN_LEN = 2_000_000 # 2 million instances is likely enough, since 3.8M yields 9.6G italian tokens # red pajama (en, de, es, fr, it) root_dir = "/mnt/data/shared/tower_llm_data/redpajama_v2_heuristic_filtered" # l_datasets = { # "it": { # "train": [ # "filtered_it_2023-06_head_documents.jsonl.gz", # "filtered_it_2022-49_head_documents.jsonl.gz", # "filtered_it_2022-40_head_documents.jsonl.gz", # ], # "test": "filtered_it_2023-14_head_documents.jsonl.gz", # }, # "es": { # "train": [ # "filtered_es_2023-06_head_documents.jsonl.gz", # "filtered_es_2022-49_head_documents.jsonl.gz", # ], # "test": "filtered_es_2023-14_head_documents.jsonl.gz", # }, # "de": { # "train": [ # "filtered_de_2023-06_head_documents.jsonl.gz", # "filtered_de_2022-49_head_documents.jsonl.gz", # ], # "test": "filtered_de_2023-14_head_documents.jsonl.gz", # }, # "fr": { # "train": [ # "filtered_fr_2023-06_head_documents.jsonl.gz", # "filtered_fr_2022-49_head_documents.jsonl.gz", # ], # "test": "filtered_fr_2023-14_head_documents.jsonl.gz", # }, # "en": { # "train": [ # "filtered_en_2023-06_head_documents.jsonl.gz", # ], # "test": "filtered_en_2023-14_head_documents.jsonl.gz", # }, # } obs = [] # train # append = True # for d in l_datasets[l]["train"]: # if append: # for o in open_read_cleaned(f"{root_dir}/{l}/{d}"): # obs.append(o) # print(f"Selected {len(obs)} instances...") # if len(obs) == TRAIN_LEN: # append = False # break # print("Saving") # write_json_lines_to_gzip(f"{root_dir}/{l}/train.jsonl.gz", obs) # test # obs = [] # for o in open_read_cleaned(f'{root_dir}/{l}/{l_datasets[l]["test"]}'): # obs.append(o) # test = pd.DataFrame(obs) # test = test.sample(n=TEST_SIZE, random_state=42).reset_index(drop=True) # test.to_json( # f"/mnt/data/jpombal/tower-results/raw_data/monolingual/red_pajama_filtered.{l}/test.jsonl", # orient="records", # lines=True, # ) # number of words that exceeds by far the number of words for the training data; # this way we ensure the test data does not overlap n_words_dict = { "nl": 933333330, "pt": 933333330, "ru": 600000000, "zh": 33888888, "ko": 350000000, } corpus = open_read_cleaned( f"/mnt/data/shared/tower_llm_data/webcorpus/{l}/0000.json.gz" ) n_words = 0 rows = 0 data = [] for doc in corpus: if l == "zh": n_words += len(doc["text"]) else: n_words += len(doc["text"].split(" ")) if n_words >= n_words_dict[l]: data.append({"text": doc["text"]}) rows += 1 if rows == TEST_SIZE: break Path(f"/mnt/data/jpombal/tower-results/raw_data/monolingual/webcorpus.{l}").mkdir( exist_ok=True, parents=True ) write_json_lines( f"/mnt/data/jpombal/tower-results/raw_data/monolingual/webcorpus.{l}/test.jsonl", data, ) print("done")