# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """GLUE dataset.""" from abc import ABC from abc import abstractmethod from torch.utils.data import Dataset from megatron import print_rank_0 from tasks.data_utils import build_sample from tasks.data_utils import build_tokens_types_paddings_from_text class GLUEAbstractDataset(ABC, Dataset): """GLUE base dataset class.""" def __init__(self, task_name, dataset_name, datapaths, tokenizer, max_seq_length): # Store inputs. self.task_name = task_name self.dataset_name = dataset_name self.tokenizer = tokenizer self.max_seq_length = max_seq_length print_rank_0(' > building {} dataset for {}:'.format(self.task_name, self.dataset_name)) # Process the files. string = ' > paths:' for path in datapaths: string += ' ' + path print_rank_0(string) self.samples = [] for datapath in datapaths: self.samples.extend(self.process_samples_from_single_path(datapath)) print_rank_0(' >> total number of samples: {}'.format( len(self.samples))) def __len__(self): return len(self.samples) def __getitem__(self, idx): raw_sample = self.samples[idx] ids, types, paddings = build_tokens_types_paddings_from_text( raw_sample['text_a'], raw_sample['text_b'], self.tokenizer, self.max_seq_length) sample = build_sample(ids, types, paddings, raw_sample['label'], raw_sample['uid']) return sample @abstractmethod def process_samples_from_single_path(self, datapath): """Abstract method that takes a single path / filename and returns a list of dataset samples, each sample being a dict of {'text_a': string, 'text_b': string, 'label': int, 'uid': int} """ pass