# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """MNLI dataset.""" from megatron import print_rank_0 from tasks.data_utils import clean_text from .data import GLUEAbstractDataset LABELS = {'contradiction': 0, 'entailment': 1, 'neutral': 2} class MNLIDataset(GLUEAbstractDataset): def __init__(self, name, datapaths, tokenizer, max_seq_length, test_label='contradiction'): self.test_label = test_label super().__init__('MNLI', name, datapaths, tokenizer, max_seq_length) def process_samples_from_single_path(self, filename): """"Implement abstract method.""" print_rank_0(' > Processing {} ...'.format(filename)) samples = [] total = 0 first = True is_test = False with open(filename, 'r') as f: for line in f: row = line.strip().split('\t') if first: first = False if len(row) == 10: is_test = True print_rank_0( ' reading {}, {} and {} columns and setting ' 'labels to {}'.format( row[0].strip(), row[8].strip(), row[9].strip(), self.test_label)) else: print_rank_0(' reading {} , {}, {}, and {} columns ' '...'.format( row[0].strip(), row[8].strip(), row[9].strip(), row[-1].strip())) continue text_a = clean_text(row[8].strip()) text_b = clean_text(row[9].strip()) unique_id = int(row[0].strip()) label = row[-1].strip() if is_test: label = self.test_label assert len(text_a) > 0 assert len(text_b) > 0 assert label in LABELS assert unique_id >= 0 sample = {'text_a': text_a, 'text_b': text_b, 'label': LABELS[label], 'uid': unique_id} total += 1 samples.append(sample) if total % 50000 == 0: print_rank_0(' > processed {} so far ...'.format(total)) print_rank_0(' >> processed {} samples.'.format(len(samples))) return samples