# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Processing data for pretraining.""" import argparse import json import multiprocessing import os import sys sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) ) import time import torch try: import nltk nltk_available = True except ImportError: nltk_available = False from megatron.data import indexed_dataset from megatron.tokenizer import build_tokenizer # https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars): _period_context_fmt = r""" \S* # some word material %(SentEndChars)s # a potential sentence ending \s* # <-- THIS is what I changed (?=(?P %(NonWord)s # either other punctuation | (?P\S+) # <-- Normally you would have \s+ here ))""" class IdentitySplitter(object): def tokenize(self, *text): return text class Encoder(object): def __init__(self, args): self.args = args def initializer(self): # Use Encoder class as a container for global data Encoder.tokenizer = build_tokenizer(self.args) if self.args.split_sentences: if not nltk_available: print("NLTK is not available to split sentences.") exit() library = "tokenizers/punkt/{}.pickle".format(self.args.lang) print("loading: " + library) splitter = nltk.load(library) if self.args.keep_newlines: # this prevents punkt from eating newlines after sentences Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer( train_text=splitter._params, lang_vars=CustomLanguageVars() ) else: Encoder.splitter = splitter else: Encoder.splitter = IdentitySplitter() def encode(self, json_line): data = json.loads(json_line) ids = {} for key in self.args.json_keys: text = data[key] doc_ids = [] for sentence in Encoder.splitter.tokenize(text): sentence_ids = Encoder.tokenizer.tokenize(sentence) if len(sentence_ids) > 0: doc_ids.append(sentence_ids) if len(doc_ids) > 0 and self.args.append_eod: doc_ids[-1].append(Encoder.tokenizer.eos) ids[key] = doc_ids return ids, len(json_line) def get_args(): parser = argparse.ArgumentParser() group = parser.add_argument_group(title="input data") group.add_argument("--input", type=str, required=True, help="Path to input JSON") group.add_argument( "--json_keys", nargs="+", default=["text"], help="space separate listed of keys to extract from json", ) group.add_argument( "--split_sentences", action="store_true", help="Split documents into sentences." ) group.add_argument( "--keep_newlines", action="store_true", help="Keep newlines between sentences when splitting.", ) group = parser.add_argument_group(title="tokenizer") group.add_argument( "--tokenizer_type", type=str, required=True, choices=[ "BertWordPieceLowerCase", "BertWordPieceCase", "GPT2BPETokenizer", "SentencePieceTokenizer", "PretrainedFromHF", "FalconTokenizer", ], help="What type of tokenizer to use.", ) group.add_argument( "--vocab_file", type=str, default=None, help="Path to the vocab file" ) group.add_argument( "--merge_file", type=str, default=None, help="Path to the BPE merge file (if necessary).", ) group.add_argument( "--append_eod", action="store_true", help="Append an token to the end of a document.", ) group.add_argument( "--lang", type=str, default="english", help="Language to use for NLTK-powered sentence splitting.", ) group = parser.add_argument_group(title="output data") group.add_argument( "--output_prefix", type=str, required=True, help="Path to binary output file without suffix", ) group.add_argument( "--dataset_impl", type=str, default="mmap", choices=["lazy", "cached", "mmap"] ) group = parser.add_argument_group(title="runtime") group.add_argument( "--workers", type=int, required=True, help="Number of worker processes to launch", ) group.add_argument( "--chunk_size", type=int, required=True, help="Chunk size assigned to each worker process", ) group.add_argument( "--log_interval", type=int, default=100, help="Interval between progress updates", ) group.add_argument("--vocab_extra_ids", type=int, default=0) group.add_argument( "--vocab_extra_ids_list", type=str, default=None, help="comma separated list of special vocab ids to add to the tokenizer", ) group.add_argument( "--no_new_tokens", action="store_false", dest="new_tokens", help=( "Whether to add special tokens (e.g. CLS, MASK, etc) " "in the sentenciepiece tokenizer or not" ), ) args = parser.parse_args() args.keep_empty = False if args.tokenizer_type.lower().startswith("bert"): if not args.split_sentences: print( "Bert tokenizer detected, are you sure you don't want to split sentences?" ) # some default/dummy values for the tokenizer args.rank = 0 args.make_vocab_size_divisible_by = 128 args.tensor_model_parallel_size = 1 return args def main(): args = get_args() startup_start = time.time() print("Opening", args.input) fin = open(args.input, "r", encoding="utf-8") if nltk_available and args.split_sentences: nltk.download("punkt", quiet=True) encoder = Encoder(args) tokenizer = build_tokenizer(args) pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer) encoded_docs = pool.imap(encoder.encode, fin, args.chunk_size) # encoded_docs = map(encoder.encode, fin) level = "document" if args.split_sentences: level = "sentence" print(f"Vocab size: {tokenizer.vocab_size}") print(f"Output prefix: {args.output_prefix}") output_bin_files = {} output_idx_files = {} builders = {} for key in args.json_keys: output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level) output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level) builders[key] = indexed_dataset.make_builder( output_bin_files[key], impl=args.dataset_impl, vocab_size=tokenizer.vocab_size, ) startup_end = time.time() proc_start = time.time() total_bytes_processed = 0 print("Time to startup:", startup_end - startup_start) for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1): total_bytes_processed += bytes_processed for key, sentences in doc.items(): if len(sentences) == 0: continue for sentence in sentences: builders[key].add_item(torch.IntTensor(sentence)) builders[key].end_document() if i % args.log_interval == 0: current = time.time() elapsed = current - proc_start mbs = total_bytes_processed / elapsed / 1024 / 1024 print( f"Processed {i} documents", f"({i/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr, ) print("Done! Now finalizing.") for key in args.json_keys: builders[key].finalize(output_idx_files[key]) if __name__ == "__main__": main()