import re import sys import os import shutil from pathlib import Path from argparse import ArgumentParser import torch from tqdm.auto import tqdm def permute_qkv( qkv_w: torch.Tensor, dim: int, n_heads: int, n_heads_kv: int, n_hidden_per_head=None, revert: bool = False, ) -> torch.Tensor: def permute(x): if revert: return x.view(head_dim // 2, 2, dim).transpose(0, 1).reshape(head_dim, dim) return x.view(2, head_dim // 2, dim).transpose(0, 1).reshape(head_dim, dim) if n_hidden_per_head is None: head_dim = dim // n_heads else: head_dim = n_hidden_per_head n_qs_per_kv = n_heads // n_heads_kv n_groups = qkv_w.size(0) // head_dim // (n_qs_per_kv + 2) groups = torch.chunk(qkv_w, n_groups, dim=0) new = [] for group in groups: *qs, k, v = torch.split(group, head_dim, dim=0) assert len(qs) == n_qs_per_kv, f"{len(qs)}, {n_qs_per_kv}" new += list(map(permute, qs)) + [permute(k), v] return torch.cat(new, dim=0) def update_checkpoint(input_dir: Path, output_dir: Path, overwrite_ok: bool = False): # make sure megatron is importable sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) ) # prepare output dir if output_dir.exists(): if not overwrite_ok: raise FileExistsError(f"Output directory {output_dir} already exists") print(f"Removing {output_dir}") shutil.rmtree(output_dir) output_dir.mkdir(exist_ok=True) # determine realease with open(input_dir / "latest_checkpointed_iteration.txt") as f: it = f.read() print("Updating weights of iteration", it) with open(output_dir / "latest_checkpointed_iteration.txt", "w+") as f: f.write(it) if it != "release": it = f"iter_{int(it):07d}" (output_dir / it).mkdir() # convert weights for fname in tqdm(list((input_dir / it).iterdir())): checkpoint = torch.load(fname / "model_optim_rng.pt", map_location="cpu") args = checkpoint["args"] args = (args.hidden_size, args.num_attention_heads, args.num_attention_heads_kv) if "transformer" in checkpoint["model"]["language_model"]: key = "transformer" attn_key = "attention" else: key = "encoder" attn_key = "self_attention" states = checkpoint["model"]["language_model"][key] for name, weight in states.items(): if re.match( rf"^layers\.[0-9]+\.{attn_key}\.query_key_value\.weight$", name ): states[name] = permute_qkv(weight, *args) (output_dir / it / fname.stem).mkdir() torch.save(checkpoint, output_dir / it / fname.stem / "model_optim_rng.pt") if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--input-dir", type=Path) parser.add_argument("--output-dir", type=Path) parser.add_argument("--overwrite-ok", action="store_true") args = parser.parse_args() update_checkpoint(args.input_dir, args.output_dir, args.overwrite_ok)