global { ducttape_output=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_llama2_all_10B repo=/mnt/data/jpombal/multilinguality_megatron external_model_dir=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_llama2_all_10B/checkpoints model_path=/mnt/data_2/cache/models--meta-llama--Llama-2-7b-hf tokenizer_path=/mnt/data_2/cache/models--meta-llama--Llama-2-7b-hf/snapshots/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/tokenizer.model train_language=(TrainLanguage: en de fr es it nl pt ru zh ko) threshold=(TrainLanguage: en=516 es=275 de=611 fr=322 nl=649 pt=257 it=332 ru=334 zh=2041 ko=198 ) # number such that final tokens for each language are around 1B n_tokens=(TrainLanguage: en=1000000000 es=833333330 de=833333330 fr=833333330 nl=833333330 pt=833333330 it=833333330 ru=500000000 zh=13888888 ko=250000000 ) dataset_path=(TrainLanguage: en=/mnt/data_2/shared/tower_llm_data/en/data es=/mnt/data_2/shared/tower_llm_data/es/3/0000.json.gz de=/mnt/data_2/shared/tower_llm_data/de/2/0000.json.gz fr=/mnt/data_2/shared/tower_llm_data/fr/1/0000.json.gz nl=/mnt/data_2/shared/tower_llm_data/nl/0000.json.gz pt=/mnt/data_2/shared/tower_llm_data/pt/0000.json.gz it=/mnt/data_2/shared/tower_llm_data/it/0000.json.gz ru=/mnt/data_2/shared/tower_llm_data/ru/6/0000.json.gz zh=/mnt/data_2/shared/tower_llm_data/zh/0000.json.gz ko=/mnt/data_2/shared/tower_llm_data/ko/0000.json.gz ) mix="10 10 10 10 10 10 10 10 10 10" min_perplexity=50 size=(Size: 7 13) log_interval=10 save_interval=635 eval_interval=635 train_steps=6358 lr_scheduler=cosine warmup_steps=63 lr=3e-5 lr_min=3e-6 weight_decay=0.1 n_gpus=8 gpu_ids=0,1,2,3,4,5,6,7 tp=(TP: 1 2 3 4) pp=(PP: 1 2 3 4) micro_batch_size=4 grad_accum_steps=12 vocab_size=32000 cpu_workers=16 wandb_run_id="llama2_7B_10b_base_vocab_uniform_cleaned_ppl_thresh_516_275_611_322_649_257_332_334_2041_198" wikipedia=False freeze_layers="" }