task DumpHFDataset > dataset_json=dataset.json :: repo=@ :: dataset_path=@ :: n_tokens=@ :: threshold=@ :: min_perplexity=@ :: is_hf_dataset=@ :: wikipedia=@ :: posterior_tokens=@ :: n_posterior_tokens=@ :: is_parallel=@ :: lp=@ { python $repo/prepare_data.py \ --output $dataset_json \ --n_tokens $n_tokens \ --dataset_path $dataset_path \ --threshold $threshold \ --min_perplexity $min_perplexity \ --is_hf_dataset $is_hf_dataset \ --wikipedia $wikipedia \ --posterior_tokens $posterior_tokens \ --n_posterior_tokens $n_posterior_tokens \ --is_parallel $is_parallel \ --lp $lp } task PreprocessDataset < dataset_json=$dataset_json@DumpHFDataset > dataset_bin=data_bin :: dataset=@ :: repo=@ :: tokenizer_path=@ :: tokenizer_type=@ :: cpu_workers=@ { set -euo pipefail mkdir -p $dataset_bin python $repo/tools/preprocess_data.py \ --input=$dataset_json \ --output_prefix=$dataset_bin/data \ --tokenizer_type=$tokenizer_type \ --vocab_file=$tokenizer_path \ --chunk_size=32 \ --workers=16 \ --no_new_tokens \ --append_eod } task Convert2Megatron > megatron_model :: repo=@ :: size=@ :: model_path=@ :: model_type=@ { python $repo/weights_conversion/hf_to_megatron.py $model_type \ --size=$size \ --out=$megatron_model \ --cache-dir=$model_path \ --model-path=$model_path } task ModelSharding < megatron_model=$megatron_model@Convert2Megatron > sharded_model :: repo=@ :: tp=@ :: pp=@ :: vocab_size=@ :: model_type=@ :: kv_channels=@ { KV_CHANNELS_ARGS="" if [ "$kv_channels" != "" ]; then KV_CHANNELS_ARGS="--kv_channels $kv_channels" fi python $repo/tools/checkpoint_util.py \ --target_tensor_parallel_size $tp \ --target_pipeline_parallel_size $pp \ --load_dir $megatron_model \ --save_dir $sharded_model \ --model_type $model_type \ --true_vocab_size $vocab_size \ --bf16 \ $KV_CHANNELS_ARGS } task MakeDataMix < dataset_bin=@PreprocessDataset > datamix_file :: datamix_weights=@ { # simply write datamix weight and path in dataset_bin to a file, separated by a space echo "$datamix_weights $dataset_bin/data_text_document" > $datamix_file } task MakeDataMixAnnealing < dataset_bin=@PreprocessDataset > datamix_file_annealing :: datamix_weights_annealing=@ { # simply write datamix weight and path in dataset_bin to a file, separated by a space echo "$datamix_weights_annealing $dataset_bin/data_text_document" > $datamix_file_annealing } task ContinuePretraining < megatron_model=$sharded_model@ModelSharding < dataset_bin=$dataset_bin@PreprocessDataset[Dataset:*] < datamix_file=$datamix_file@MakeDataMix[Dataset:*] > model_dir=checkpoints :: repo=@ :: log_interval=@ :: save_interval=@ :: eval_interval=@ :: train_steps=@ :: lr_scheduler=@ :: warmup_steps=@ :: lr=@ :: lr_min=@ :: n_gpus=@ :: gpu_ids=@ :: tp=@ :: pp=@ :: external_model_dir=@ :: tokenizer_path=@ :: micro_batch_size=@ :: grad_accum_steps=@ :: weight_decay=@ :: freeze_layers=@ :: eval_iters=@ :: model_type=@ :: seq_length=@ :: glu_activation=@ :: kv_channels=@ :: layernorm_epsilon=@ :: tokenizer_type=@ { #external_model_dir="${external_model_dir}_${lr}" if [ "$external_model_dir" != "" ]; then mkdir -p $external_model_dir mkdir -p $external_model_dir/runs ln -s $external_model_dir $model_dir fi data_path="" for f in $datamix_file; do # read file data_path="$data_path `cat $f`" done echo "Running with data_path=$data_path" FREEZE_ARGS="" if [ "$freeze_layers" == "not_embeddings" ]; then FREEZE_ARGS="--freeze_layers" fi echo $FREEZE_ARGS export CUDA_VISIBLE_DEVICES=$gpu_ids # if load_from_checkpoint, then set megatron_model to external_model_dir ckpt_flag=$external_model_dir/latest_checkpointed_iteration.txt if [ -f $ckpt_flag ]; then megatron_model=$external_model_dir echo Loading from previously saved checkpoint. fi KV_CHANNELS_ARGS="" if [ "$kv_channels" != "" ]; then KV_CHANNELS_ARGS="--kv_channels $kv_channels" fi TIE_ARGS="" if [ $model_type != 'gemma' ]; then TIE_ARGS+="--no_tie_embed_logits" fi global_batch_size=$(($micro_batch_size * $n_gpus * $grad_accum_steps)) LOG_ARGS="--log_interval $log_interval --save_interval $save_interval --eval_interval $eval_interval --eval_iters $eval_iters --log_validation_ppl_to_tensorboard --log_memory_to_tensorboard --log_batch_size_to_tensorboard" TRAIN_ARGS="--train_iters $train_steps --lr_decay_style $lr_scheduler --lr_warmup_iters $warmup_steps --lr $lr --min_lr $lr_min --weight_decay $weight_decay" DISTRIBUTED_ARGS="--nproc_per_node $n_gpus --nnodes 1 --node_rank 0 --master_addr localhost --master_port 8134" COMMON_ARGS="--hidden_dropout 0.0 --attention_dropout 0.0 --no_bias_gelu_fusion" LLAMA_ARGS="--use_rms_norm --glu_activation $glu_activation --no_new_tokens --layernorm_epsilon $layernorm_epsilon" CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun $DISTRIBUTED_ARGS $repo/finetune.py \ --tensor_model_parallel_size $tp \ --pipeline_model_parallel_size $pp \ --load $megatron_model \ --save $model_dir \ --tensorboard_dir $external_model_dir/runs \ --data_path $data_path \ --model_name $model_type \ --tokenizer_type $tokenizer_type \ --vocab_file=$tokenizer_path \ --bf16 \ --use_flash_attn \ --micro_batch_size $micro_batch_size \ --global_batch_size $global_batch_size \ --sequence_parallel \ --recompute_granularity selective \ --use_checkpoint_args \ --seq_length $seq_length \ --split 9995,3,2 \ --sliding_window_size 4096 \ --reset_attention_mask \ --no_bias_gelu_fusion \ $COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA_ARGS $FREEZE_ARGS $KV_CHANNELS_ARGS $TIE_ARGS } task Annealing < megatron_model=$model_dir@ContinuePretraining < dataset_bin=$dataset_bin@PreprocessDataset[Dataset:*] < datamix_file=$datamix_file_annealing@MakeDataMixAnnealing[Dataset:*] > model_dir=checkpoints :: repo=@ :: log_interval=@ :: save_interval=@ :: eval_interval=@ :: train_steps_annealing=@ :: lr_scheduler_annealing=@ :: lr_annealing=@ :: lr_min_annealing=@ :: warmup_steps_annealing=@ :: n_gpus=@ :: gpu_ids=@ :: tp=@ :: pp=@ :: external_model_dir=@ :: external_model_dir_annealing=@ :: tokenizer_path=@ :: micro_batch_size=@ :: grad_accum_steps=@ :: weight_decay=@ :: freeze_layers=@ :: eval_iters=@ :: model_type=@ :: seq_length=@ :: glu_activation=@ :: kv_channels=@ :: layernorm_epsilon=@ :: tokenizer_type=@ { #external_model_dir="${external_model_dir}_${lr_annealing}" #external_model_dir_annealing="${external_model_dir_annealing}_${lr_annealing}" if [ "$external_model_dir" != "" ]; then mkdir -p $external_model_dir_annealing mkdir -p $external_model_dir/runs/annealing ln -s $external_model_dir_annealing $model_dir fi data_path="" for f in $datamix_file; do # read file data_path="$data_path `cat $f`" done echo "Running with data_path=$data_path" FREEZE_ARGS="" if [ "$freeze_layers" == "not_embeddings" ]; then FREEZE_ARGS="--freeze_layers" fi echo $FREEZE_ARGS KV_CHANNELS_ARGS="" if [ "$kv_channels" != "" ]; then KV_CHANNELS_ARGS="--kv_channels $kv_channels" fi TIE_ARGS="" if [ $model_type != 'gemma' ]; then TIE_ARGS+="--no_tie_embed_logits" fi export CUDA_VISIBLE_DEVICES=$gpu_ids global_batch_size=$(($micro_batch_size * $n_gpus * $grad_accum_steps)) LOG_ARGS="--log_interval $log_interval --save_interval $save_interval --eval_interval $eval_interval --eval_iters $eval_iters --log_validation_ppl_to_tensorboard --log_memory_to_tensorboard --log_batch_size_to_tensorboard" TRAIN_ARGS="--train_iters $train_steps_annealing --lr_decay_style $lr_scheduler_annealing --lr_warmup_iters $warmup_steps_annealing --lr $lr_annealing --min_lr $lr_min_annealing --weight_decay $weight_decay" DISTRIBUTED_ARGS="--nproc_per_node $n_gpus --nnodes 1 --node_rank 0 --master_addr localhost --master_port 8135" COMMON_ARGS="--hidden_dropout 0.0 --attention_dropout 0.0 --no_bias_gelu_fusion" LLAMA_ARGS="--use_rms_norm --glu_activation $glu_activation --no_new_tokens --layernorm_epsilon $layernorm_epsilon" CUDA_DEVICE_MAX_CONNECTIONS=1 torchrun $DISTRIBUTED_ARGS $repo/finetune.py \ --tensor_model_parallel_size $tp \ --pipeline_model_parallel_size $pp \ --load $megatron_model \ --save $model_dir \ --tensorboard_dir $external_model_dir/runs/annealing \ --data_path $data_path \ --model_name $model_type \ --tokenizer_type $tokenizer_type \ --vocab_file=$tokenizer_path \ --bf16 \ --use_flash_attn \ --micro_batch_size $micro_batch_size \ --global_batch_size $global_batch_size \ --sequence_parallel \ --recompute_granularity selective \ --use_checkpoint_args \ --seq_length $seq_length \ --split 9990,5,5 \ --sliding_window_size 4096 \ --annealing \ $COMMON_ARGS $LOG_ARGS $TRAIN_ARGS $LLAMA_ARGS $FREEZE_ARGS $KV_CHANNELS_ARGS $TIE_ARGS } plan preprocess_mc4 { reach PreprocessDataset via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko) * (DataMix: mc4_uniform) } plan preprocess_inst { reach PreprocessDataset via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko pl sv en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en instructions en_de_pre_annealing de_en_pre_annealing en_fr_pre_annealing fr_en_pre_annealing en_es_pre_annealing es_en_pre_annealing en_it_pre_annealing it_en_pre_annealing en_nl_pre_annealing nl_en_pre_annealing en_pt_pre_annealing pt_en_pre_annealing en_ru_pre_annealing ru_en_pre_annealing en_zh_pre_annealing zh_en_pre_annealing en_ko_pre_annealing ko_en_pre_annealing en_de_wmt en_ru_wmt en_zh_wmt) } plan preprocess_data { reach PreprocessDataset via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko pl sv en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en en_pl pl_en en_sv sv_en instructions) * (DataMix: mc4_wiki_uniform) } plan train_mc4_wiki { reach ContinuePretraining via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_wiki de_wiki fr_wiki es_wiki it_wiki nl_wiki pt_wiki ru_wiki zh_wiki ko_wiki) * (DataMix: mc4_wiki_uniform) } plan train_mc4 { reach ContinuePretraining via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko) } plan prepare_data { reach DumpHFDataset via (Size: 1) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko) } plan preprocess_data_parallel { reach PreprocessDataset via (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_ko ko_en en_zh zh_en) } plan train_mc4_parallel_instructions { reach ContinuePretraining via (Size: 1) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en instructions) } plan train_mc4_parallel_instructions_annealing { reach Annealing via (Size: 1) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en instructions) } plan train_mc4_parallel { reach ContinuePretraining via (Size: 8) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) } plan train_mc4_parallel_13B { reach ContinuePretraining via (Size: 13) * (TP: 8) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) } plan warmed_up_train { reach ContinuePretrainingWarmedUp via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_wiki de_wiki fr_wiki es_wiki it_wiki nl_wiki pt_wiki ru_wiki zh_wiki ko_wiki) * (DataMix: mc4_wiki_uniform) } plan train_parallel { reach ContinuePretraining via (Size: 8) * (TP: 4) * (PP: 1) * (Dataset: en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) } plan gemma_test { reach ContinuePretraining via (Size: 1) * (TP: 2) * (PP: 1) * (Dataset: en es) } plan train_mc4_parallel_gemma { reach ContinuePretraining via (Size: 2) * (TP: 1) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) } plan annealing { reach Annealing via (Size: 1) * (TP: 4) * (PP: 1) * (Dataset: *) } plan cpt { reach ContinuePretraining via (Size: 7) * (TP: 4) * (PP: 1) * (Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en) }