#!/bin/bash # Evaluate natural question test data given Wikipedia embeddings and pretrained # ICT model or a finetuned model for Natural Question task # Datasets can be downloaded from the following link: # https://github.com/facebookresearch/DPR/blob/master/data/download_data.py EVIDENCE_DATA_DIR= EMBEDDING_PATH= CHECKPOINT_PATH= QA_FILE= python tasks/main.py \ --task RETRIEVER-EVAL \ --tokenizer_type BertWordPieceLowerCase \ --num_layers 12 \ --hidden_size 768 \ --num_attention_heads 12 \ --tensor_model_parallel_size 1 \ --micro_batch_size 128 \ --activations_checkpoint_method uniform \ --seq_length 512 \ --max_position_embeddings 512 \ --load ${CHECKPOINT_PATH} \ --evidence_data_path ${EVIDENCE_DATA_DIR} \ --embedding_path ${EMBEDDING_PATH} \ --retriever_seq_length 256 \ --vocab_file bert-vocab.txt\ --qa_data_test ${QA_FILE} \ --faiss_use_gpu \ --retriever_report_topk_accuracies 1 5 20 100 \ --fp16 \ --indexer_log_interval 1000 \ --indexer_batch_size 128