#!/bin/bash WORLD_SIZE=8 DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" TRAIN_DATA="data/RACE/train/middle" VALID_DATA="data/RACE/dev/middle \ data/RACE/dev/high" VOCAB_FILE=bert-vocab.txt PRETRAINED_CHECKPOINT=checkpoints/bert_345m CHECKPOINT_PATH=checkpoints/bert_345m_race python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \ --task RACE \ --seed 1234 \ --train_data $TRAIN_DATA \ --valid_data $VALID_DATA \ --tokenizer_type BertWordPieceLowerCase \ --vocab_file $VOCAB_FILE \ --epochs 3 \ --pretrained_checkpoint $PRETRAINED_CHECKPOINT \ --tensor_model_parallel_size 1 \ --num_layers 24 \ --hidden_size 1024 \ --num_attention_heads 16 \ --micro_batch_size 4 \ --activations_checkpoint_method uniform \ --lr 1.0e-5 \ --lr_decay_style linear \ --lr_warmup_fraction 0.06 \ --seq_length 512 \ --max_position_embeddings 512 \ --save_interval 100000 \ --save $CHECKPOINT_PATH \ --log_interval 10 \ --eval_interval 100 \ --eval_iters 50 \ --weight_decay 1.0e-1 \ --clip_grad 1.0 \ --hidden_dropout 0.1 \ --attention_dropout 0.1 \ --fp16