#!/bin/bash # Finetune a BERT or pretrained ICT model using Google natural question data # Datasets can be downloaded from the following link: # https://github.com/facebookresearch/DPR/blob/master/data/download_data.py WORLD_SIZE=8 DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" CHECKPOINT_PATH= # Load either of the below BERT_LOAD_PATH= PRETRAINED_CHECKPOINT= python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/main.py \ --task RET-FINETUNE-NQ \ --train_with_neg \ --train_hard_neg 1 \ --pretrained_checkpoint ${PRETRAINED_CHECKPOINT} \ --num_layers 12 \ --hidden_size 768 \ --num_attention_heads 12 \ --tensor_model_parallel_size 1 \ --tokenizer_type BertWordPieceLowerCase \ --train_data nq-train.json \ --valid_data nq-dev.json \ --save ${CHECKPOINT_PATH} \ --load ${CHECKPOINT_PATH} \ --vocab_file bert-vocab.txt \ --bert_load ${BERT_LOAD_PATH} \ --save_interval 5000 \ --log_interval 10 \ --eval_interval 20000 \ --eval_iters 100 \ --indexer_log_interval 1000 \ --faiss_use_gpu \ --DDP_impl torch \ --fp16 \ --retriever_report_topk_accuracies 1 5 10 20 100 \ --seq_length 512 \ --retriever_seq_length 256 \ --max_position_embeddings 512 \ --retriever_score_scaling \ --epochs 80 \ --micro_batch_size 8 \ --eval_micro_batch_size 16 \ --indexer_batch_size 128 \ --lr 2e-5 \ --lr_warmup_fraction 0.01 \ --weight_decay 1e-1