#!/bin/bash ######################### # Evaluate the F1 scores. ######################### WORLD_SIZE=1 DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" MODEL_GEN_PATH= \ (e.g., /testseen_knowledge_generations.txt) GROUND_TRUTH_PATH= \ (e.g., /testseen_knowledge_reference.txt) python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \ --num_layers 24 \ --hidden_size 1024 \ --num_attention_heads 16 \ --seq_length 2048 \ --max_position_embeddings 2048 \ --micro_batch_size 4 \ --task MSDP-EVAL-F1 \ --guess_file ${MODEL_GEN_PATH} \ --answer_file ${GROUND_TRUTH_PATH} ############################################ # Evaluate BLEU, METEOR, and ROUGE-L scores. ############################################ # We follow the nlg-eval (https://github.com/Maluuba/nlg-eval) to # evaluate the BLEU, METEOR, and ROUGE-L scores. # To evaluate on these metrics, please setup the environments based on # the nlg-eval github, and run the corresponding evaluation commands. nlg-eval \ --hypothesis= \ --references=