#!/bin/bash # Stage-2: Prompt a pretrained language model to generate the corresponding response # The input contains prompts, current dialogue context, and generated knowledge in Stage-1 # The output is the corresponding response. # The size of the pretrained language model is 357M WORLD_SIZE=8 DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" CHECKPOINT_PATH= (e.g., /357m) VOCAB_PATH= (e.g., /gpt2-vocab.json) MERGE_PATH= (e.g., /gpt2-merges.txt) INPUT_PATH= (e.g., /testseen_processed.txt) PROMPT_PATH= \ (e.g., /response_prompts.txt) OUTPUT_PATH= \ (e.g., /output_testseen_response_generations.txt) python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \ --num_layers 24 \ --hidden_size 1024 \ --num_attention_heads 16 \ --seq_length 2048 \ --max_position_embeddings 2048 \ --micro_batch_size 1 \ --vocab_file ${VOCAB_PATH} \ --merge_file ${MERGE_PATH} \ --load ${CHECKPOINT_PATH} \ --fp16 \ --DDP_impl torch \ --tokenizer_type GPT2BPETokenizer \ --sample_input_file ${INPUT_PATH} \ --sample_output_file ${OUTPUT_PATH} \ --prompt_file ${PROMPT_PATH} \ --prompt_type response \ --num_prompt_examples 20 \ --task MSDP-PROMPT # NOTE: If you use api for the model generation, please use # the "--api_prompt" flag (setting this value as True).