#!/bin/bash RANK=0 WORLD_SIZE=1 DATA_PATH=_text_sentence CHECKPOINT_PATH= python pretrain_bert.py \ --num_layers 24 \ --hidden_size 1024 \ --num_attention_heads 16 \ --micro_batch_size 4 \ --global_batch_size 8 \ --seq_length 512 \ --max_position_embeddings 512 \ --train_iters 2000000 \ --lr_decay_iters 990000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data_path $DATA_PATH \ --vocab_file bert-vocab.txt \ --data_impl mmap \ --split 949,50,1 \ --lr 0.0001 \ --min_lr 0.00001 \ --lr_decay_style linear \ --lr_warmup_fraction .01 \ --weight_decay 1e-2 \ --clip_grad 1.0 \ --log_interval 100 \ --save_interval 10000 \ --eval_interval 1000 \ --eval_iters 10 \ --fp16