#! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=_text_document CHECKPOINT_PATH= DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --num_layers 24 \ --hidden_size 1024 \ --num_attention_heads 16 \ --micro_batch_size 8 \ --global_batch_size 64 \ --seq_length 1024 \ --max_position_embeddings 1024 \ --train_iters 500000 \ --lr_decay_iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data_path $DATA_PATH \ --vocab_file gpt2-vocab.json \ --merge_file gpt2-merges.txt \ --data_impl mmap \ --split 949,50,1 \ --distributed_backend nccl \ --lr 0.00015 \ --lr_decay_style cosine \ --min_lr 1.0e-5 \ --weight_decay 1e-2 \ --clip_grad 1.0 \ --lr_warmup_fraction .01 \ --activations_checkpoint_method uniform \ --log_interval 100 \ --save_interval 10000 \ --eval_interval 1000 \ --eval_iters 10 \ --fp16