import torch from transformers import AutoModel, AutoTokenizer, LlamaForCausalLM # Load the Llama 2 checkpoint llama2_checkpoint_path = "/mnt/data/bpop/multilinguality_tower/extended-models/llama-2-7b-hf-merged-multi-32k-meaninit" llama2_tokenizer = AutoTokenizer.from_pretrained(llama2_checkpoint_path) llama2_model = LlamaForCausalLM.from_pretrained(llama2_checkpoint_path) # Load the original Llama 2 model original_llama2_model_name = "/mnt/data_2/cache/models--meta-llama--Llama-2-7b-hf/snapshots/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9" original_llama2_tokenizer = AutoTokenizer.from_pretrained(original_llama2_model_name) original_llama2_model = LlamaForCausalLM.from_pretrained(original_llama2_model_name) # Compare the weights of the embedding and output layers llama2_embedding_weights = llama2_model.get_input_embeddings().weight original_llama2_embedding_weights = original_llama2_model.get_input_embeddings().weight for (name1, param1), (name2, param2) in zip( llama2_model.named_parameters(), original_llama2_model.named_parameters() ): try: if not torch.allclose(param1, param2, atol=1e-7): print(f"Different weights in {name1} and {name2}") else: print(f"Same weights in {name1} and {name2}") except: print(f"Couldn't do allclose for layer {name1}") a = 1