# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """GPT style dataset.""" import os import time from typing import Optional, List import numpy as np import torch from megatron import print_rank_0 from megatron.core import mpu from megatron.data.blendable_dataset import BlendableDataset from megatron.data.dataset_utils import get_datasets_weights_and_num_samples from megatron.data.dataset_utils import get_train_valid_test_split_ import megatron.data.indexed_dataset def build_train_valid_test_datasets(data_prefix: Optional[str], data_impl: str, splits_string: str, train_valid_test_num_samples: List[int], seq_length: int, seed: int, skip_warmup: bool, train_data_prefix=None, valid_data_prefix=None, test_data_prefix=None): """Build train, valid, and test datasets.""" if data_prefix: print_rank_0("Single data path provided for train, valid & test") # Single dataset. if len(data_prefix) == 1: return _build_train_valid_test_datasets(data_prefix[0], data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup) # Blending dataset. # Parse the values. output = get_datasets_weights_and_num_samples(data_prefix, train_valid_test_num_samples) prefixes, weights, datasets_train_valid_test_num_samples = output # Build individual datasets. train_datasets = [] valid_datasets = [] test_datasets = [] for i in range(len(prefixes)): train_ds, valid_ds, test_ds = _build_train_valid_test_datasets( prefixes[i], data_impl, splits_string, datasets_train_valid_test_num_samples[i], seq_length, seed, skip_warmup) if train_ds: train_datasets.append(train_ds) if valid_ds: valid_datasets.append(valid_ds) if test_ds: test_datasets.append(test_ds) # Blend. blending_train_dataset = None if train_datasets: blending_train_dataset = BlendableDataset(train_datasets, weights) blending_valid_dataset = None if valid_datasets: blending_valid_dataset = BlendableDataset(valid_datasets, weights) blending_test_dataset = None if test_datasets: #weights=weights[:-1] blending_test_dataset = BlendableDataset(test_datasets, weights) return (blending_train_dataset, blending_valid_dataset, blending_test_dataset) else: print_rank_0("Separate data paths provided for train, valid & test. Split string will be ignored.") train_dataset, valid_dataset, test_dataset = None, None, None # Single dataset. if train_data_prefix is not None: train_dataset = _build_dataset("train", train_data_prefix, data_impl, train_valid_test_num_samples[0], seq_length, seed, skip_warmup) if valid_data_prefix is not None: valid_dataset = _build_dataset("valid", valid_data_prefix, data_impl, train_valid_test_num_samples[1], seq_length, seed, False) if test_data_prefix is not None: test_dataset = _build_dataset("test", test_data_prefix, data_impl, train_valid_test_num_samples[2], seq_length, seed, False) return train_dataset, valid_dataset, test_dataset def _build_dataset(dataset_name, data_prefix, data_impl, num_samples, seq_length, seed, skip_warmup): dataset = None if len(data_prefix) == 1: dataset = _build_dataset_kernel(dataset_name, data_prefix[0], data_impl, num_samples, seq_length, seed, skip_warmup) else: # Blending dataset. # Parse the values. output = get_datasets_weights_and_num_samples(data_prefix, num_samples) prefixes, weights, dataset_num_samples = output # Build individual datasets. datasets = [] for i in range(len(prefixes)): ds = _build_dataset_kernel(dataset_name, prefixes[i], data_impl, dataset_num_samples[i], seq_length, seed, skip_warmup) if ds: datasets.append(ds) if datasets: dataset = BlendableDataset(datasets, weights) return dataset def _build_dataset_kernel(dataset_name, data_prefix, data_impl, num_samples, seq_length, seed, skip_warmup): """ Build dataset. This method is called when individual train, valid, test datasets are provided """ # Indexed dataset. indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup) total_num_of_documents = indexed_dataset.sizes.shape[0] print_rank_0(' {}:'.format(dataset_name)) print_rank_0(' document indices in [0, {}) total of {} ' 'documents'.format(total_num_of_documents, total_num_of_documents)) documents = np.arange(start=0, stop=total_num_of_documents, step=1, dtype=np.int32) dataset = GPTDataset(dataset_name, data_prefix, documents, indexed_dataset, num_samples, seq_length, seed) return dataset def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string: str, train_valid_test_num_samples, seq_length, seed, skip_warmup): """Build train, valid, and test datasets.""" # Indexed dataset. indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup) total_num_of_documents = indexed_dataset.sizes.shape[0] splits = get_train_valid_test_split_(splits_string, total_num_of_documents) # Print stats about the splits. print_rank_0(' > dataset split:') def print_split_stats(name, index): print_rank_0(' {}:'.format(name)) print_rank_0(' document indices in [{}, {}) total of {} ' 'documents'.format(splits[index], splits[index + 1], splits[index + 1] - splits[index])) print_split_stats('train', 0) print_split_stats('validation', 1) print_split_stats('test', 2) def _f(index, name): dataset = None if splits[index + 1] > splits[index]: documents = np.arange(start=splits[index], stop=splits[index + 1], step=1, dtype=np.int32) dataset = GPTDataset(name, data_prefix, documents, indexed_dataset, train_valid_test_num_samples[index], seq_length, seed) return dataset train_dataset = _f(0, 'train') valid_dataset = _f(1, 'valid') test_dataset = _f(2, 'test') return train_dataset, valid_dataset, test_dataset def get_indexed_dataset_(data_prefix, data_impl, skip_warmup): print_rank_0(' > building dataset index ...') start_time = time.time() indexed_dataset = megatron.data.indexed_dataset.make_dataset(data_prefix, data_impl, skip_warmup) assert indexed_dataset is not None print_rank_0(' > finished creating indexed dataset in {:4f} seconds'.format(time.time() - start_time)) print_rank_0(' number of documents: {}'.format(indexed_dataset.sizes.shape[0])) n_tokens = _num_tokens(np.arange(start=0, stop=indexed_dataset.sizes.shape[0], step=1, dtype=np.int32), indexed_dataset.sizes) print_rank_0(' number of tokens: {}'.format(n_tokens)) return indexed_dataset class GPTDataset(torch.utils.data.Dataset): def __init__(self, name, data_prefix, documents, indexed_dataset, num_samples, seq_length, seed): self.name = name self.indexed_dataset = indexed_dataset # Checks assert np.min(documents) >= 0 assert np.max(documents) < indexed_dataset.sizes.shape[0] # Build index mappings. self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings( self.name, data_prefix, documents, self.indexed_dataset.sizes, num_samples, seq_length, seed) def __len__(self): # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) return self.sample_idx.shape[0] - 1 def __getitem__(self, idx): # Get the shuffled index. idx = self.shuffle_idx[idx] # Start and end documents and offsets. doc_index_f = self.sample_idx[idx][0] doc_index_l = self.sample_idx[idx + 1][0] offset_f = self.sample_idx[idx][1] offset_l = self.sample_idx[idx + 1][1] # If we are within the same document, just extract the chunk. if doc_index_f == doc_index_l: sample = self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + 1) else: # Otherwise, get the rest of the initial document. sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f)] # Loop over all in between documents and add the entire document. for i in range(doc_index_f + 1, doc_index_l): sample_list.append(self.indexed_dataset.get(self.doc_idx[i])) # And finally add the relevant portion of last document. sample_list.append(self.indexed_dataset.get( self.doc_idx[doc_index_l], length=offset_l + 1)) sample = np.concatenate(sample_list) return {'text': np.array(sample, dtype=np.int64)} def _build_index_mappings(name, data_prefix, documents, sizes, num_samples, seq_length, seed): """Build doc-idx, sample-idx, and shuffle-idx. doc-idx: is an array (ordered) of documents to be used in training. sample-idx: is the start document index and document offset for each training sample. shuffle-idx: maps the sample index into a random index into sample-idx. """ # Number of tokens in each epoch and number of required epochs. tokens_per_epoch = _num_tokens(documents, sizes) num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples) # rng state np_rng = np.random.RandomState(seed=seed) # Filename of the index mappings. _filename = data_prefix _filename += '_{}_indexmap'.format(name) _filename += '_{}ns'.format(num_samples) _filename += '_{}sl'.format(seq_length) _filename += '_{}s'.format(seed) doc_idx_filename = _filename + '_doc_idx.npy' sample_idx_filename = _filename + '_sample_idx.npy' shuffle_idx_filename = _filename + '_shuffle_idx.npy' # Build the indexed mapping if not exist. if torch.distributed.get_rank() == 0: if (not os.path.isfile(doc_idx_filename)) or \ (not os.path.isfile(sample_idx_filename)) or \ (not os.path.isfile(shuffle_idx_filename)): print_rank_0(' > WARNING: could not find index map files, building ' 'the indices on rank 0 ...') # For the last epoch, decide whether include the entire epoch # in the global shuffle or not. # If we need only one epoch, then separating last epoch does # not mean anything. if num_epochs == 1: separate_last_epoch = False print(' > only one epoch required, setting ' 'separate_last_epoch to False', flush=True) else: # Get the number of samples for the last epoch num_samples_from_epochs_minus_one = ( (num_epochs - 1) * tokens_per_epoch - 1) // seq_length last_epoch_num_samples = num_samples - \ num_samples_from_epochs_minus_one assert last_epoch_num_samples >= 0, \ 'last epoch number of samples should be non-negative.' num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length assert last_epoch_num_samples < (num_samples_per_epoch + 1), \ 'last epoch number of samples exceeded max value.' # If we have less than 80% of the samples for the last epoch, # seperate out the epoch and treat it differently. # Note: the 80% number is just based on common sense and can # be adjusted if needed. separate_last_epoch = (last_epoch_num_samples < int(0.80 * num_samples_per_epoch)) if separate_last_epoch: string = ' > last epoch number of samples ({}) is smaller '\ 'than 80% of number of samples per epoch ({}), '\ 'setting separate_last_epoch to True' else: string = ' > last epoch number of samples ({}) is larger '\ 'than 80% of number of samples per epoch ({}), '\ 'setting separate_last_epoch to False' print(string.format(last_epoch_num_samples, num_samples_per_epoch), flush=True) # doc-idx. start_time = time.time() doc_idx = _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch) np.save(doc_idx_filename, doc_idx, allow_pickle=True) print_rank_0(' > elasped time to build and save doc-idx mapping ' '(seconds): {:4f}'.format(time.time() - start_time)) # sample-idx. start_time = time.time() # Use C++ implementation for speed. # First compile and then import. from megatron.data import helpers assert doc_idx.dtype == np.int32 assert sizes.dtype == np.int32 sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch) # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length, # num_epochs, tokens_per_epoch) np.save(sample_idx_filename, sample_idx, allow_pickle=True) print_rank_0(' > elasped time to build and save sample-idx mapping ' '(seconds): {:4f}'.format(time.time() - start_time)) # shuffle-idx. start_time = time.time() # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) if separate_last_epoch: num_samples_ = num_samples_from_epochs_minus_one else: num_samples_ = sample_idx.shape[0] - 1 shuffle_idx = _build_shuffle_idx(num_samples_, sample_idx.shape[0] - 1, np_rng) np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True) print_rank_0(' > elasped time to build and save shuffle-idx mapping' ' (seconds): {:4f}'.format(time.time() - start_time)) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group()) assert counts[0].item() == ( torch.distributed.get_world_size() // torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group())) # Load mappings. start_time = time.time() print_rank_0(' > loading doc-idx mapping from {}'.format( doc_idx_filename)) doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r') print_rank_0(' > loading sample-idx mapping from {}'.format( sample_idx_filename)) sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r') print_rank_0(' > loading shuffle-idx mapping from {}'.format( shuffle_idx_filename)) shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r') print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( time.time() - start_time)) print_rank_0(' total number of tokens: {}'.format(_num_tokens(documents, sizes))) print_rank_0(' total number of samples: {}'.format( sample_idx.shape[0])) print_rank_0(' total number of epochs: {}'.format(num_epochs)) return doc_idx, sample_idx, shuffle_idx def _num_tokens(documents, sizes): """Total number of tokens in the dataset.""" return np.sum(sizes[documents]) def _num_epochs(tokens_per_epoch, seq_length, num_samples): """Based on number of samples and sequence lenght, calculate how many epochs will be needed.""" num_epochs = 0 total_tokens = 0 while True: num_epochs += 1 total_tokens += tokens_per_epoch # -1 is because we need to retrieve seq_length + 1 token each time # but the last token will overlap with the first token of the next # sample except for the last sample. if ((total_tokens - 1) // seq_length) >= num_samples: return num_epochs def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch): """Build an array with length = number-of-epochs * number-of-dcuments. Each index is mapped to a corresponding document.""" if not separate_last_epoch or num_epochs == 1: doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1] doc_idx[:] = documents doc_idx = doc_idx.reshape(-1) doc_idx = doc_idx.astype(np.int32) np_rng.shuffle(doc_idx) return doc_idx doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False) doc_idx_last = _build_doc_idx(documents, 1, np_rng, False) return np.concatenate((doc_idx_first, doc_idx_last)) def _build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch): """Sample index mapping is a 2D array with sizes [number-of-samples + 1, 2] where [..., 0] contains the index into `doc_idx` and [..., 1] is the starting offset in that document.""" # Total number of samples. For -1 see comments in `_num_epochs`. num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32) # Index into sample_idx. sample_index = 0 # Index into doc_idx. doc_idx_index = 0 # Begining offset for each document. doc_offset = 0 # Start with first document and no offset. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 while sample_index <= num_samples: # Start with a fresh sequence. remaining_seq_length = seq_length + 1 while remaining_seq_length != 0: # Get the document length. doc_id = doc_idx[doc_idx_index] doc_length = sizes[doc_id] - doc_offset # And add it to the current sequence. remaining_seq_length -= doc_length # If we have more than a full sequence, adjust offset and set # remaining length to zero so we return from the while loop. # Note that -1 here is for the same reason we have -1 in # `_num_epochs` calculations. if remaining_seq_length <= 0: doc_offset += (remaining_seq_length + doc_length - 1) remaining_seq_length = 0 else: # Otherwise, start from the begining of the next document. doc_idx_index += 1 doc_offset = 0 # Record the sequence. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 return sample_idx def _build_shuffle_idx(num_samples, total_size, np_rng): """Build the range [0, size) and shuffle.""" print(' > building shuffle index with split [0, {}) and [{}, {}) ' '...'.format(num_samples, num_samples, total_size), flush=True) dtype_ = np.uint32 if total_size >= (np.iinfo(np.uint32).max - 1): dtype_ = np.int64 shuffle_idx_first = np.arange(start=0, stop=num_samples, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_first) if num_samples == total_size: return shuffle_idx_first shuffle_idx_last = np.arange(start=num_samples, stop=total_size, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_last) return np.concatenate((shuffle_idx_first, shuffle_idx_last))