import os import time import numpy as np import torch from megatron import print_rank_0 from megatron.core import mpu, tensor_parallel from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy from megatron import get_args, get_tokenizer, print_rank_0 def get_one_epoch_dataloader(dataset, micro_batch_size=None): """Specifically one epoch to be used in an indexing job.""" args = get_args() world_size = mpu.get_data_parallel_world_size() rank = mpu.get_data_parallel_rank() if micro_batch_size is None: micro_batch_size = args.micro_batch_size global_batch_size = micro_batch_size * world_size num_workers = args.num_workers sampler = torch.utils.data.SequentialSampler(dataset) # importantly, drop_last must be False to get all the data. assert False, 'DistributedBatchSampler deprecated, change the implementation' from megatron.data.samplers import DistributedBatchSampler batch_sampler = DistributedBatchSampler(sampler, batch_size=global_batch_size, drop_last=False, rank=rank, world_size=world_size) return torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True) def get_ict_batch(data_iterator): # Items and their type. keys = ['query_tokens', 'query_pad_mask', 'block_tokens', 'block_pad_mask', 'block_data'] datatype = torch.int64 # Broadcast data. if data_iterator is None: data = None else: data = next(data_iterator) data_b = tensor_parallel.broadcast_data(keys, data, datatype) # Unpack. query_tokens = data_b['query_tokens'].long() query_pad_mask = data_b['query_pad_mask'].long() block_tokens = data_b['block_tokens'].long() block_pad_mask = data_b['block_pad_mask'].long() block_indices = data_b['block_data'].long() return query_tokens, query_pad_mask,\ block_tokens, block_pad_mask, block_indices def join_str_list(str_list): """Join a list of strings, handling spaces appropriately""" result = "" for s in str_list: if s.startswith("##"): result += s[2:] else: result += " " + s return result class BlockSampleData(object): """A struct for fully describing a fixed-size block of data as used in REALM :param start_idx: for first sentence of the block :param end_idx: for last sentence of the block (may be partially truncated in sample construction) :param doc_idx: the index of the document from which the block comes in the original indexed dataset :param block_idx: a unique integer identifier given to every block. """ def __init__(self, start_idx, end_idx, doc_idx, block_idx): self.start_idx = start_idx self.end_idx = end_idx self.doc_idx = doc_idx self.block_idx = block_idx def as_array(self): return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64) def as_tuple(self): return self.start_idx, self.end_idx, self.doc_idx, self.block_idx class BlockSamplesMapping(object): def __init__(self, mapping_array): # make sure that the array is compatible with BlockSampleData assert mapping_array.shape[1] == 4 self.mapping_array = mapping_array def __len__(self): return self.mapping_array.shape[0] def __getitem__(self, idx): """Get the data associated with an indexed sample.""" sample_data = BlockSampleData(*self.mapping_array[idx]) return sample_data def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs, max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False): """Get samples mapping for a dataset over fixed size blocks. This function also requires a dataset of the titles for the source documents since their lengths must be taken into account. :return: samples_mapping (BlockSamplesMapping) """ if not num_epochs: if not max_num_samples: raise ValueError("Need to specify either max_num_samples " "or num_epochs") num_epochs = np.iinfo(np.int32).max - 1 if not max_num_samples: max_num_samples = np.iinfo(np.int64).max - 1 # Filename of the index mapping indexmap_filename = data_prefix indexmap_filename += '_{}_indexmap'.format(name) if num_epochs != (np.iinfo(np.int32).max - 1): indexmap_filename += '_{}ep'.format(num_epochs) if max_num_samples != (np.iinfo(np.int64).max - 1): indexmap_filename += '_{}mns'.format(max_num_samples) indexmap_filename += '_{}msl'.format(max_seq_length) indexmap_filename += '_{}s'.format(seed) if use_one_sent_docs: indexmap_filename += '_1sentok' indexmap_filename += '.npy' # Build the indexed mapping if not exist. if mpu.get_data_parallel_rank() == 0 and \ not os.path.isfile(indexmap_filename): print(' > WARNING: could not find index map file {}, building ' 'the indices on rank 0 ...'.format(indexmap_filename)) # Make sure the types match the helpers input types. assert block_dataset.doc_idx.dtype == np.int64 assert block_dataset.sizes.dtype == np.int32 # Build samples mapping verbose = torch.distributed.get_rank() == 0 start_time = time.time() print_rank_0(' > building samples index mapping for {} ...'.format( name)) from megatron.data import helpers mapping_array = helpers.build_blocks_mapping( block_dataset.doc_idx, block_dataset.sizes, title_dataset.sizes, num_epochs, max_num_samples, max_seq_length - 3, # account for added tokens seed, verbose, use_one_sent_docs) print_rank_0(' > done building samples index mapping') np.save(indexmap_filename, mapping_array, allow_pickle=True) print_rank_0(' > saved the index mapping in {}'.format( indexmap_filename)) # Make sure all the ranks have built the mapping print_rank_0(' > elapsed time to build and save samples mapping ' '(seconds): {:4f}'.format( time.time() - start_time)) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) assert counts[0].item() == torch.distributed.get_world_size( group=mpu.get_data_parallel_group()) # Load indexed dataset. print_rank_0(' > loading indexed mapping from {}'.format( indexmap_filename)) start_time = time.time() mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r') samples_mapping = BlockSamplesMapping(mapping_array) print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( time.time() - start_time)) print_rank_0(' total number of samples: {}'.format( mapping_array.shape[0])) return samples_mapping