import sys import time import torch import torch.distributed as dist from megatron.core import mpu import megatron.checkpointing from megatron.data.orqa_wiki_dataset import get_open_retrieval_wiki_dataset from megatron.data.orqa_wiki_dataset import get_open_retrieval_batch from megatron.data.biencoder_dataset_utils import get_one_epoch_dataloader from megatron.data.realm_index import detach, OpenRetreivalDataStore import megatron.model.biencoder_model import megatron.training class IndexBuilder(object): """ Object for taking one pass over a dataset and creating a BlockData of its embeddings """ def __init__(self, args): self.model = None self.dataloader = None self.evidence_embedder_obj = None self.biencoder_shared_query_context_model = args.biencoder_shared_query_context_model # need to know whether we're using a REALM checkpoint (args.load) # or ICT checkpoint assert not (args.load and args.ict_load) self.log_interval = args.indexer_log_interval self.batch_size = args.indexer_batch_size self.load_attributes(args) self.is_main_builder = mpu.get_data_parallel_rank() == 0 self.num_total_builders = mpu.get_data_parallel_world_size() self.iteration = self.total_processed = 0 def load_attributes(self, args): """ Load the necessary attributes: model, dataloader and empty BlockData """ only_context_model = True if self.biencoder_shared_query_context_model: only_context_model = False model_provider_func = megatron.model.biencoder_model.get_model_provider(only_context_model=only_context_model, biencoder_shared_query_context_model=self.biencoder_shared_query_context_model) model = megatron.training.get_model(model_provider_func, args=args) self.model = megatron.checkpointing.load_biencoder_checkpoint(model, only_context_model=only_context_model) assert len(self.model) == 1 self.model[0].eval() self.dataset = get_open_retrieval_wiki_dataset() self.dataloader = iter(get_one_epoch_dataloader(self.dataset, self.batch_size)) self.evidence_embedder_obj = OpenRetreivalDataStore( \ load_from_path=False) def track_and_report_progress(self, batch_size): """ Utility function for tracking progress """ self.iteration += 1 self.total_processed += batch_size * self.num_total_builders if self.is_main_builder and self.iteration % self.log_interval == 0: print('Batch {:10d} | Total {:10d}'.format(self.iteration, self.total_processed), flush=True) def build_and_save_index(self): """ Goes through one epoch of the dataloader and adds all data to this instance's BlockData. The copy of BlockData is saved as a shard, which when run in a distributed setting will be consolidated by the rank 0 process and saved as a final pickled BlockData. """ assert len(self.model) == 1 unwrapped_model = self.model[0] while not hasattr(unwrapped_model, 'embed_text'): unwrapped_model = unwrapped_model.module while True: try: # batch also has query_tokens and query_pad_data row_id, context_tokens, context_mask, context_types, \ context_pad_mask = get_open_retrieval_batch( \ self.dataloader) except (StopIteration, IndexError): break # TODO: can we add with torch.no_grad() to reduce memory usage # detach, separate fields and add to BlockData assert context_mask.dtype == torch.bool context_logits = unwrapped_model.embed_text( unwrapped_model.context_model, context_tokens, context_mask, context_types) context_logits = detach(context_logits) row_id = detach(row_id) self.evidence_embedder_obj.add_block_data(row_id, context_logits) self.track_and_report_progress(batch_size=len(row_id)) # This process signals to finalize its shard and then synchronize with # the other processes self.evidence_embedder_obj.save_shard() torch.distributed.barrier() del self.model # rank 0 process builds the final copy if self.is_main_builder: self.evidence_embedder_obj.merge_shards_and_save() # make sure that every single piece of data was embedded assert len(self.evidence_embedder_obj.embed_data) == \ len(self.dataset) self.evidence_embedder_obj.clear() # complete building the final copy torch.distributed.barrier()