# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """BERT model.""" import torch from megatron import get_args from megatron.core import tensor_parallel from megatron.model.enums import AttnMaskType from megatron.model.language_model import parallel_lm_logits import megatron.model.language_model from megatron.model import LayerNorm import megatron.model.utils from megatron.model.utils import erf_gelu from megatron.model.utils import init_method_normal from megatron.model.utils import scaled_init_method_normal from .module import MegatronModule def bert_extended_attention_mask(attention_mask): # We create a 3D attention mask from a 2D tensor mask. # [b, 1, s] attention_mask_b1s = attention_mask.unsqueeze(1) # [b, s, 1] attention_mask_bs1 = attention_mask.unsqueeze(2) # [b, s, s] attention_mask_bss = attention_mask_b1s * attention_mask_bs1 # [b, 1, s, s] extended_attention_mask = attention_mask_bss.unsqueeze(1) # Convert attention mask to binary: extended_attention_mask = (extended_attention_mask < 0.5) return extended_attention_mask def bert_position_ids(token_ids): # Create position ids seq_length = token_ids.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device=token_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(token_ids) return position_ids class BertLMHead(MegatronModule): """Masked LM head for Bert Arguments: mpu_vocab_size: model parallel size of vocabulary. hidden_size: hidden size init_method: init method for weight initialization layernorm_epsilon: tolerance for layer norm divisions parallel_output: whether output logits being distributed or not. """ def __init__(self, mpu_vocab_size, hidden_size, init_method, layernorm_epsilon, parallel_output): super(BertLMHead, self).__init__() args = get_args() self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size)) tensor_parallel.set_tensor_model_parallel_attributes(self.bias, True, 0, 1) self.parallel_output = parallel_output self.dense = megatron.model.utils.get_linear_layer(hidden_size, hidden_size, init_method, args.perform_initialization) setattr(self.dense.weight, 'sequence_parallel', args.sequence_parallel) setattr(self.dense.bias, 'sequence_parallel', args.sequence_parallel) self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon, sequence_parallel=args.sequence_parallel) self.gelu = torch.nn.functional.gelu if args.onnx_safe: self.gelu = erf_gelu def forward(self, hidden_states, word_embeddings_weight): hidden_states = self.dense(hidden_states) hidden_states = self.gelu(hidden_states) hidden_states = self.layernorm(hidden_states) output = parallel_lm_logits(hidden_states, word_embeddings_weight, self.parallel_output, bias=self.bias) return output def post_language_model_processing(lm_output, pooled_output, lm_head, binary_head, lm_labels, logit_weights, fp16_lm_cross_entropy): # Output. lm_logits = lm_head( lm_output, logit_weights) binary_logits = None if binary_head is not None: binary_logits = binary_head(pooled_output) if lm_labels is None: # [s b h] => [b s h] return lm_logits.transpose(0,1).contiguous(), binary_logits else: # [b s] => [s b] lm_labels = lm_labels.transpose(0, 1).contiguous() # lm_logits : [s, b, h] and lm_labels: [s, b] if fp16_lm_cross_entropy: assert lm_logits.dtype == torch.half lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits, lm_labels) else: lm_loss = tensor_parallel.vocab_parallel_cross_entropy(lm_logits.float(), lm_labels) # [s, b] => [b s] lm_loss = lm_loss.transpose(0,1).contiguous() return lm_loss, binary_logits class BertModel(MegatronModule): """Bert Language model.""" def __init__(self, num_tokentypes: int=2, add_binary_head=True, parallel_output=True, pre_process=True, post_process=True, model_type=None): super(BertModel, self).__init__() args = get_args() self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy self.add_binary_head = add_binary_head self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process init_method = init_method_normal(args.init_method_std) scaled_init_method = scaled_init_method_normal(args.init_method_std, args.num_layers) self.language_model, self._language_model_key = megatron.model.language_model.get_language_model( num_tokentypes=num_tokentypes, add_pooler=self.add_binary_head, encoder_attn_mask_type=AttnMaskType.padding, init_method=init_method, scaled_init_method=scaled_init_method, pre_process=self.pre_process, post_process=self.post_process, args=args, model_type=model_type) self.initialize_word_embeddings(init_method_normal, args) if self.post_process: self.lm_head = BertLMHead( self.word_embeddings_weight().size(0), args.hidden_size, init_method, args.layernorm_epsilon, parallel_output) self._lm_head_key = 'lm_head' self.binary_head = None if self.add_binary_head: self.binary_head = megatron.model.utils.get_linear_layer(args.hidden_size, 2, init_method, args.perform_initialization) self._binary_head_key = 'binary_head' def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward(self, bert_model_input, attention_mask, tokentype_ids=None, lm_labels=None): extended_attention_mask = bert_extended_attention_mask(attention_mask) input_ids = bert_model_input position_ids = bert_position_ids(input_ids) lm_output = self.language_model( input_ids, position_ids, extended_attention_mask, tokentype_ids=tokentype_ids ) if self.post_process and self.add_binary_head: lm_output, pooled_output = lm_output else: pooled_output = None if self.post_process: return post_language_model_processing(lm_output, pooled_output, self.lm_head, self.binary_head, lm_labels, self.word_embeddings_weight(), self.fp16_lm_cross_entropy) else: return lm_output def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._language_model_key] \ = self.language_model.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) if self.post_process: state_dict_[self._lm_head_key] \ = self.lm_head.state_dict_for_save_checkpoint(prefix=prefix, keep_vars=keep_vars) if self.post_process and self.add_binary_head: state_dict_[self._binary_head_key] \ = self.binary_head.state_dict(prefix=prefix, keep_vars=keep_vars) # Save word_embeddings. if self.post_process and not self.pre_process: state_dict_[self._word_embeddings_for_head_key] \ = self.word_embeddings.state_dict(prefix=prefix, keep_vars=keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.language_model.load_state_dict( state_dict[self._language_model_key], strict=strict) if self.post_process: self.lm_head.load_state_dict( state_dict[self._lm_head_key], strict=strict) if self.post_process and self.add_binary_head: self.binary_head.load_state_dict( state_dict[self._binary_head_key], strict=strict) # Load word_embeddings. if self.post_process and not self.pre_process: self.word_embeddings.load_state_dict( state_dict[self._word_embeddings_for_head_key], strict=strict)