"""Falcon Model.""" import warnings from megatron import get_args from .enums import PositionEmbeddingType from . import GPTModel class FalconModel(GPTModel): def __init__(self, num_tokentypes: int = 0, parallel_output: bool = True, pre_process: bool = True, post_process: bool = True, model_type=None): args = get_args() assert args.position_embedding_type == PositionEmbeddingType.rotary, \ f"Falcon uses rotary embedding, not {args.position_embedding_type}" assert isinstance(args.num_attention_heads_kv, int), \ "Falcon needs a not None num_attention_heads_kv parameter" assert not args.use_post_ln, \ "FalconModel requires pre-normalization, not use_post_ln" assert args.glu_activation is None, \ "FalconModel requires gelu activation (set glu_activation=None)" assert not args.use_bias, "Falcon does not use bias" assert args.parallel_attn, "Falcon uses parallel_attn" if not args.parallel_layernorm: warnings.warn("Falcon uses parallel_layernorm, or are you running falcon-7b?") if not args.use_flash_attn: warnings.warn("Falcon should use flash attn") if args.bias_gelu_fusion: warnings.warn("Falcon should not use bias_gelu_fusion") if args.bias_dropout_fusion: warnings.warn("Falcon should not use bias_dropout_fusion") if args.hidden_dropout > 0.0 and not args.lima_dropout: warnings.warn("Falcon should not use dropout") super().__init__(num_tokentypes=num_tokentypes, parallel_output=parallel_output, pre_process=pre_process, post_process=post_process, model_type=model_type)