"""Llama Model.""" import warnings from megatron import get_args from .enums import PositionEmbeddingType from . import GPTModel class GemmaModel(GPTModel): def __init__(self, num_tokentypes: int = 0, parallel_output: bool = True, pre_process: bool = True, post_process: bool = True, model_type=None, version: int = 2): args = get_args() # mandatory arguments assert version in {1, 2}, f"Unknown llama version {version}" assert args.position_embedding_type == PositionEmbeddingType.rotary, \ f"Llama uses rotary embedding, not {args.position_embedding_type}" assert not args.use_post_ln, "Llama does not use post_ln" assert args.glu_activation == "geglu", "Llama works with swiglu activation" assert not args.use_bias, "Llama does not use bias" assert not args.parallel_attn, "Llama does not use parallel_attn" assert args.use_rms_norm, "Llama uses rms_norm" assert args.tie_embed_logits , "Gemma ties embedding and lm_head weights" # recomended arguments if args.bias_gelu_fusion: warnings.warn("Llama is not intended to use bias_gelu_fusion") if args.bias_dropout_fusion: warnings.warn("Llama is not intended to use bias_dropout_fusion") if args.hidden_dropout > 0.0 and not args.lima_dropout: warnings.warn( "Llama is not intended to use dropout") if args.attention_dropout > 0.0: warnings.warn( "Llama is not intended to use dropout") super().__init__(num_tokentypes=num_tokentypes, parallel_output=parallel_output, pre_process=pre_process, post_process=post_process, model_type=model_type)