# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Utilities for models.""" import math from typing import Callable import torch def init_method_normal(sigma): """Init method based on N(0, sigma).""" def init_(tensor): return torch.nn.init.normal_(tensor, mean=0.0, std=sigma) return init_ def scaled_init_method_normal(sigma, num_layers): """Init method based on N(0, sigma/sqrt(2*num_layers).""" std = sigma / math.sqrt(2.0 * num_layers) def init_(tensor): return torch.nn.init.normal_(tensor, mean=0.0, std=std) return init_ def attention_mask_func(attention_scores, attention_mask): attention_scores.masked_fill_(attention_mask, -10000.0) return attention_scores def get_linear_layer(rows: int, columns: int, init_method: Callable, perform_initialization: bool): """Simple linear layer with weight initialization.""" layer = torch.nn.Linear(rows, columns) if perform_initialization: init_method(layer.weight) with torch.no_grad(): layer.bias.zero_() return layer @torch.jit.script def erf_gelu(x): # This is actually Python equivalent of torch.nn.functional.gelu(), also with type hints for ONNX exporter return x * 0.5 * (torch.erf(x / 1.41421).to(dtype=x.dtype)+torch.ones_like(x).to(dtype=x.dtype))