# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Gradient clipping.""" import torch from torch import inf # from torch._six import inf from apex.multi_tensor_apply import multi_tensor_applier import amp_C from megatron.model.module import param_is_not_shared from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate def clip_grad_norm_fp32(parameters, grads_for_norm, max_norm, norm_type=2, model_parallel_group=None): """Clips gradient norm of an iterable of parameters whose gradients are in fp32. This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and added functionality to handle model parallel parameters. Note that the gradients are modified in place. Arguments: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized grads_for_norm (Iterable[Tensor]): an iterable of Tensors or a single Tensor that will be used for calculating the grad norm. max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. model_parallel_group (group): given the nature of the distributed optimizer, this is passed as an argument. Returns: Total norm of the parameters (viewed as a single vector). """ if isinstance(parameters, torch.Tensor): parameters = [parameters] if isinstance(grads_for_norm, torch.Tensor): grads_for_norm = [grads_for_norm] # Grads. grads = [] for param in parameters: if param.grad is not None: assert param.grad.type() == 'torch.cuda.FloatTensor' grads.append(param.grad.detach()) # Norm parameters. max_norm = float(max_norm) norm_type = float(norm_type) total_norm = 0.0 # Calculate norm. if norm_type == inf: total_norm = max(grad.abs().max() for grad in grads_for_norm) total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)]) # Take max across all model-parallel GPUs. torch.distributed.all_reduce(total_norm_cuda, op=torch.distributed.ReduceOp.MAX, group=model_parallel_group) total_norm = total_norm_cuda[0].item() else: if norm_type == 2.0: dummy_overflow_buf = torch.cuda.IntTensor([0]) # Use apex's multi-tensor applier for efficiency reasons. # Multi-tensor applier takes a function and a list of list # and performs the operation on that list all in one kernel. if grads_for_norm: grad_norm, _ = multi_tensor_applier( amp_C.multi_tensor_l2norm, dummy_overflow_buf, [grads_for_norm], False # no per-parameter norm ) else: grad_norm = torch.cuda.FloatTensor([0]) # Since we will be summing across data parallel groups, # we need the pow(norm-type). total_norm = grad_norm ** norm_type else: for grad in grads_for_norm: grad_norm = torch.norm(grad, norm_type) total_norm += grad_norm ** norm_type # Sum across all model-parallel GPUs. torch.distributed.all_reduce(total_norm, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group) total_norm = total_norm.item() ** (1.0 / norm_type) # Scale. clip_coeff = max_norm / (total_norm + 1.0e-6) if clip_coeff < 1.0: dummy_overflow_buf = torch.cuda.IntTensor([0]) multi_tensor_applier(amp_C.multi_tensor_scale, dummy_overflow_buf, [grads, grads], clip_coeff) return total_norm def count_zeros_fp32(parameters, model_parallel_group): if isinstance(parameters, torch.Tensor): parameters = [parameters] # Filter parameters based on: # - grad should not be none # - parameter should not be shared # - should not be a replica due to tensor model parallelism total_num_zeros = torch.cuda.FloatTensor([0.0]) for param in parameters: grad_not_none = param.grad is not None is_not_shared = param_is_not_shared(param) is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param) if grad_not_none and is_not_shared and is_not_tp_duplicate: grad = param.grad.detach() num_zeros = grad.numel() - torch.count_nonzero(grad) total_num_zeros = num_zeros + total_num_zeros # Sum across all model-parallel GPUs. torch.distributed.all_reduce(total_num_zeros, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group) total_num_zeros = total_num_zeros.item() return total_num_zeros