# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Megatron grad scaler.""" from abc import ABC from abc import abstractmethod import torch class MegatronGradScaler(ABC): def __init__(self, initial_scale): """Initialize scale value with the input initial scale.""" assert initial_scale > 0.0 self._scale = torch.cuda.FloatTensor([initial_scale]) @property def scale(self): return self._scale @property def inv_scale(self): return self._scale.double().reciprocal().float() @abstractmethod def update(self, found_inf): pass @abstractmethod def state_dict(self): pass @abstractmethod def load_state_dict(self, state_dict): pass class ConstantGradScaler(MegatronGradScaler): def update(self, found_inf): pass def state_dict(self): return dict() def load_state_dict(self, state_dict): pass class DynamicGradScaler(MegatronGradScaler): def __init__(self, initial_scale, min_scale, growth_factor, backoff_factor, growth_interval, hysteresis): """"Grad scaler with dynamic scale that gets adjusted during training.""" super(DynamicGradScaler, self).__init__(initial_scale) # Lower bound on the scale. assert min_scale > 0.0 assert min_scale <= initial_scale self.min_scale = torch.cuda.FloatTensor([min_scale]) # Growth and backoff factors for the scale. assert growth_factor > 1.0 self.growth_factor = torch.cuda.FloatTensor([growth_factor]) assert backoff_factor < 1.0 assert backoff_factor > 0.0 self.backoff_factor = torch.cuda.FloatTensor([backoff_factor]) # Interval over which if we don't see any inf/nan, # we will scale the grad scale by the growth factor. assert growth_interval > 0 self.growth_interval = growth_interval # Number of inf/nans we should see before scaling down # the grad scale by the backoff factor. assert hysteresis > 0 self.hysteresis = hysteresis # Trackers. self._growth_tracker = 0 self._hysteresis_tracker = self.hysteresis def update(self, found_inf): # If we have an inf/nan, growth tracker is set to 0 # and hysterisis tracker is reduced by 1. if found_inf: self._growth_tracker = 0 self._hysteresis_tracker -= 1 # Now if we are out of hysteresis count, scale down the loss. if self._hysteresis_tracker <= 0: self._scale = torch.max(self._scale * self.backoff_factor, self.min_scale) else: # If there is no nan/inf, increment the growth tracker. self._growth_tracker += 1 # If we have had enough consequitive intervals with no nan/inf: if self._growth_tracker == self.growth_interval: # Reset the tracker and hysteresis trackers, self._growth_tracker = 0 self._hysteresis_tracker = self.hysteresis # and scale up the loss scale. self._scale = self._scale * self.growth_factor def state_dict(self): state_dict = {} state_dict['scale'] = self._scale state_dict['growth_tracker'] = self._growth_tracker state_dict['hysteresis_tracker'] = self._hysteresis_tracker return state_dict def load_state_dict(self, state_dict): self._scale = state_dict['scale'].cuda(torch.cuda.current_device()) self._growth_tracker = state_dict['growth_tracker'] self._hysteresis_tracker = state_dict['hysteresis_tracker']