# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. from functools import reduce import operator import torch from megatron import get_args, core from megatron.core import mpu def _communicate_shapes(tensor_send_next, tensor_send_prev, recv_prev, recv_next): """Communicate tensor shapes between stages. Used to communicate tensor shapes before the actual tensor communication happens. This is required when the sequence lengths across micro batches are not uniform. Takes the following arguments: tensor_send_next: tensor to send to next rank (no tensor sent if set to None). tensor_send_prev: tensor to send to prev rank (no tensor sent if set to None). recv_prev: boolean for whether tensor should be received from previous rank. recv_next: boolean for whether tensor should be received from next rank. Returns: (recv_prev_shape, recv_next_shape) """ args = get_args() recv_prev_shape_tensor = None recv_next_shape_tensor = None send_prev_shape_tensor = None send_next_shape_tensor = None if recv_prev: recv_prev_shape_tensor = torch.empty((3), device=torch.cuda.current_device(), dtype=torch.int64) if recv_next: recv_next_shape_tensor = torch.empty((3), device=torch.cuda.current_device(), dtype=torch.int64) if tensor_send_prev is not None: send_prev_shape_tensor = torch.tensor(tensor_send_prev.size(), device=torch.cuda.current_device(), dtype=torch.int64) if tensor_send_next is not None: send_next_shape_tensor = torch.tensor(tensor_send_next.size(), device=torch.cuda.current_device(), dtype=torch.int64) if args.use_ring_exchange_p2p: torch.distributed.ring_exchange(tensor_send_prev=send_prev_shape_tensor, tensor_recv_prev=recv_prev_shape_tensor, tensor_send_next=send_next_shape_tensor, tensor_recv_next=recv_next_shape_tensor, group=mpu.get_pipeline_model_parallel_group()) else: ops = [] if send_prev_shape_tensor is not None: send_prev_op = torch.distributed.P2POp( torch.distributed.isend, send_prev_shape_tensor, mpu.get_pipeline_model_parallel_prev_rank()) ops.append(send_prev_op) if recv_prev_shape_tensor is not None: recv_prev_op = torch.distributed.P2POp( torch.distributed.irecv, recv_prev_shape_tensor, mpu.get_pipeline_model_parallel_prev_rank()) ops.append(recv_prev_op) if send_next_shape_tensor is not None: send_next_op = torch.distributed.P2POp( torch.distributed.isend, send_next_shape_tensor, mpu.get_pipeline_model_parallel_next_rank()) ops.append(send_next_op) if recv_next_shape_tensor is not None: recv_next_op = torch.distributed.P2POp( torch.distributed.irecv, recv_next_shape_tensor, mpu.get_pipeline_model_parallel_next_rank()) ops.append(recv_next_op) if len(ops) > 0: reqs = torch.distributed.batch_isend_irecv(ops) for req in reqs: req.wait() # To protect against race condition when using batch_isend_irecv(). # should take this out once the bug with batch_isend_irecv is resolved. torch.cuda.synchronize() recv_prev_shape = [0, 0, 0] if recv_prev_shape_tensor is not None: recv_prev_shape = recv_prev_shape_tensor.tolist() recv_next_shape = [0, 0, 0] if recv_next_shape_tensor is not None: recv_next_shape = recv_next_shape_tensor.tolist() return recv_prev_shape, recv_next_shape def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next, tensor_shape, dtype_=None): """Communicate tensors between stages. Used as helper method in other communication methods that are used in megatron/schedules.py. Takes the following arguments: tensor_send_next: tensor to send to next rank (no tensor sent if set to None). tensor_send_prev: tensor to send to prev rank (no tensor sent if set to None). recv_prev: boolean for whether tensor should be received from previous rank. recv_next: boolean for whether tensor should be received from next rank. tensor_shape: shape of tensor to receive (this method assumes that all tensors sent and received in a single function call are the same shape). dtype_: optional, this is used when the tensor that needs to be communicated is different from args.params_dtype. Returns: (tensor_recv_prev, tensor_recv_next) """ args = get_args() # Create placeholder tensors for receive in forward and backward directions # if needed. tensor_recv_prev = None tensor_recv_next = None # Some legacy inference code doesn't set the tensor shape, do so now # for the normal values for gpt/bert. This could be removed if inference # code is changed to provide tensor_shape. if not args.variable_seq_lengths: if tensor_shape is None: recv_prev_shape = (args.seq_length, args.micro_batch_size, args.hidden_size) recv_next_shape = (args.seq_length, args.micro_batch_size, args.hidden_size) else: recv_prev_shape = tensor_shape recv_next_shape = tensor_shape else: recv_prev_shape, recv_next_shape = \ _communicate_shapes(tensor_send_next, tensor_send_prev, recv_prev, recv_next) override_scatter_gather_tensors_in_pipeline = False if args.scatter_gather_tensors_in_pipeline and \ not args.sequence_parallel: recv_prev_chunk_shape = reduce(operator.mul, recv_prev_shape, 1) recv_next_chunk_shape = reduce(operator.mul, recv_next_shape, 1) if recv_prev_chunk_shape % mpu.get_tensor_model_parallel_world_size() == 0 and \ recv_next_chunk_shape % mpu.get_tensor_model_parallel_world_size() == 0: recv_prev_chunk_shape = recv_prev_chunk_shape // \ mpu.get_tensor_model_parallel_world_size() recv_next_chunk_shape = recv_next_chunk_shape // \ mpu.get_tensor_model_parallel_world_size() else: recv_prev_chunk_shape = recv_prev_shape recv_next_chunk_shape = recv_next_shape override_scatter_gather_tensors_in_pipeline = True else: recv_prev_chunk_shape = recv_prev_shape recv_next_chunk_shape = recv_next_shape dtype = args.params_dtype if args.fp32_residual_connection: dtype = torch.float requires_grad = True if dtype_ is not None: dtype = dtype_ requires_grad = False if recv_prev: tensor_recv_prev = torch.empty(recv_prev_chunk_shape, requires_grad=requires_grad, device=torch.cuda.current_device(), dtype=dtype) if recv_next: tensor_recv_next = torch.empty(recv_next_chunk_shape, requires_grad=requires_grad, device=torch.cuda.current_device(), dtype=dtype) # Split tensor into smaller chunks if using scatter-gather optimization. if not override_scatter_gather_tensors_in_pipeline and \ args.scatter_gather_tensors_in_pipeline and \ not args.sequence_parallel: if tensor_send_next is not None: tensor_send_next = core.tensor_parallel.split_tensor_into_1d_equal_chunks(tensor_send_next) if tensor_send_prev is not None: tensor_send_prev = core.tensor_parallel.split_tensor_into_1d_equal_chunks(tensor_send_prev) # Send tensors in both the forward and backward directions as appropriate. if args.use_ring_exchange_p2p: torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev, tensor_recv_prev=tensor_recv_prev, tensor_send_next=tensor_send_next, tensor_recv_next=tensor_recv_next, group=mpu.get_pipeline_model_parallel_group()) else: ops = [] if tensor_send_prev is not None: send_prev_op = torch.distributed.P2POp( torch.distributed.isend, tensor_send_prev, mpu.get_pipeline_model_parallel_prev_rank()) ops.append(send_prev_op) if tensor_recv_prev is not None: recv_prev_op = torch.distributed.P2POp( torch.distributed.irecv, tensor_recv_prev, mpu.get_pipeline_model_parallel_prev_rank()) ops.append(recv_prev_op) if tensor_send_next is not None: send_next_op = torch.distributed.P2POp( torch.distributed.isend, tensor_send_next, mpu.get_pipeline_model_parallel_next_rank()) ops.append(send_next_op) if tensor_recv_next is not None: recv_next_op = torch.distributed.P2POp( torch.distributed.irecv, tensor_recv_next, mpu.get_pipeline_model_parallel_next_rank()) ops.append(recv_next_op) if len(ops) > 0: reqs = torch.distributed.batch_isend_irecv(ops) for req in reqs: req.wait() # To protect against race condition when using batch_isend_irecv(). torch.cuda.synchronize() # If using scatter-gather optimization, gather smaller chunks. if not override_scatter_gather_tensors_in_pipeline and \ args.scatter_gather_tensors_in_pipeline and \ not args.sequence_parallel: if recv_prev: tensor_recv_prev = core.tensor_parallel.gather_split_1d_tensor( tensor_recv_prev).view(recv_prev_shape).requires_grad_() tensor_recv_prev = core.utils.make_viewless_tensor(tensor_recv_prev, requires_grad=True, keep_graph=False) if recv_next: tensor_recv_next = core.tensor_parallel.gather_split_1d_tensor( tensor_recv_next).view(recv_next_shape).requires_grad_() tensor_recv_next = core.utils.make_viewless_tensor(tensor_recv_next, requires_grad=True, keep_graph=False) return tensor_recv_prev, tensor_recv_next def recv_forward(tensor_shape=None, dtype_=None, timers=None): """Receive tensor from previous rank in pipeline (forward receive).""" if mpu.is_pipeline_first_stage(): input_tensor = None else: if timers is not None: timers('forward-recv', log_level=2).start() input_tensor, _ = _communicate( tensor_send_next=None, tensor_send_prev=None, recv_prev=True, recv_next=False, tensor_shape=tensor_shape, dtype_=dtype_) if timers is not None: timers('forward-recv').stop() return input_tensor def recv_backward(tensor_shape=None, timers=None): """Receive tensor from next rank in pipeline (backward receive).""" if mpu.is_pipeline_last_stage(): output_tensor_grad = None else: if timers is not None: timers('backward-recv', log_level=2).start() _, output_tensor_grad = _communicate( tensor_send_next=None, tensor_send_prev=None, recv_prev=False, recv_next=True, tensor_shape=tensor_shape) if timers is not None: timers('backward-recv').stop() return output_tensor_grad def send_forward(output_tensor, tensor_shape=None, dtype_=None, timers=None): """Send tensor to next rank in pipeline (forward send).""" if not mpu.is_pipeline_last_stage(): if timers is not None: timers('forward-send', log_level=2).start() _communicate( tensor_send_next=output_tensor, tensor_send_prev=None, recv_prev=False, recv_next=False, tensor_shape=tensor_shape, dtype_=dtype_) if timers is not None: timers('forward-send').stop() def send_backward(input_tensor_grad, tensor_shape=None, timers=None): """Send tensor to previous rank in pipeline (backward send).""" if not mpu.is_pipeline_first_stage(): if timers is not None: timers('backward-send', log_level=2).start() _communicate( tensor_send_next=None, tensor_send_prev=input_tensor_grad, recv_prev=False, recv_next=False, tensor_shape=tensor_shape) if timers is not None: timers('backward-send').stop() def send_forward_recv_backward(output_tensor, tensor_shape=None, timers=None): """Batched send and recv with next rank in pipeline.""" if mpu.is_pipeline_last_stage(): output_tensor_grad = None else: if timers is not None: timers('forward-send-backward-recv', log_level=2).start() _, output_tensor_grad = _communicate( tensor_send_next=output_tensor, tensor_send_prev=None, recv_prev=False, recv_next=True, tensor_shape=tensor_shape) if timers is not None: timers('forward-send-backward-recv').stop() return output_tensor_grad def send_backward_recv_forward(input_tensor_grad, tensor_shape=None, timers=None): """Batched send and recv with previous rank in pipeline.""" if mpu.is_pipeline_first_stage(): input_tensor = None else: if timers is not None: timers('backward-send-forward-recv', log_level=2).start() input_tensor, _ = _communicate( tensor_send_next=None, tensor_send_prev=input_tensor_grad, recv_prev=True, recv_next=False, tensor_shape=tensor_shape) if timers is not None: timers('backward-send-forward-recv').stop() return input_tensor def send_forward_recv_forward(output_tensor, recv_prev, tensor_shape=None, timers=None): """Batched recv from previous rank and send to next rank in pipeline.""" if timers is not None: timers('forward-send-forward-recv', log_level=2).start() input_tensor, _ = _communicate( tensor_send_next=output_tensor, tensor_send_prev=None, recv_prev=recv_prev, recv_next=False, tensor_shape=tensor_shape) if timers is not None: timers('forward-send-forward-recv').stop() return input_tensor def send_backward_recv_backward(input_tensor_grad, recv_next, tensor_shape=None, timers=None): """Batched recv from next rank and send to previous rank in pipeline.""" if timers is not None: timers('backward-send-backward-recv', log_level=2).start() _, output_tensor_grad = _communicate( tensor_send_next=None, tensor_send_prev=input_tensor_grad, recv_prev=False, recv_next=recv_next, tensor_shape=tensor_shape) if timers is not None: timers('backward-send-backward-recv').stop() return output_tensor_grad def send_forward_backward_recv_forward_backward( output_tensor, input_tensor_grad, recv_prev, recv_next, tensor_shape=None, timers=None): """Batched send and recv with previous and next ranks in pipeline.""" if timers is not None: timers('forward-backward-send-forward-backward-recv', log_level=2).start() input_tensor, output_tensor_grad = _communicate( tensor_send_next=output_tensor, tensor_send_prev=input_tensor_grad, recv_prev=recv_prev, recv_next=recv_next, tensor_shape=tensor_shape) if timers is not None: timers('forward-backward-send-forward-backward-recv').stop() return input_tensor, output_tensor_grad