# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Pretrain BERT for Inverse Cloze Task""" from functools import partial import math import torch import torch.distributed as dist import torch.nn.functional as F import megatron.training from megatron import get_args from megatron import print_rank_0 from megatron import get_timers from megatron.core import mpu from megatron.data.biencoder_dataset_utils import get_ict_batch from megatron.data.dataset_utils import build_train_valid_test_datasets from megatron.model import ModelType import megatron.model.biencoder_model from megatron.utils import average_losses_across_data_parallel_group def pretrain_ict_model_provider(pre_process=True, post_process=True): args = get_args() ict_model_type = ModelType.encoder_or_decoder model = megatron.model.biencoder_model.biencoder_model_provider( only_context_model=False, only_query_model=False, biencoder_shared_query_context_model=args.biencoder_shared_query_context_model, pre_process=pre_process, post_process=post_process, model_type=ict_model_type) return model def get_group_world_size_rank(): group = mpu.get_data_parallel_group() rank = torch.distributed.get_rank(group=group) world_size = torch.distributed.get_world_size(group=group) return group, rank, world_size class AllgatherFromDataParallelRegion(torch.autograd.Function): @staticmethod def forward(ctx, input_): assert input_.dim() == 2 group, rank, world_size = get_group_world_size_rank() tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ torch.distributed.all_gather(tensor_list, input_, group=group) output = torch.cat(tensor_list, dim=0).contiguous() return output @staticmethod def backward(ctx, grad_output): group, rank, world_size = get_group_world_size_rank() assert grad_output.shape[0] % world_size == 0 dim_size = grad_output.shape[0] // world_size output_list = torch.split(grad_output, dim_size, dim=0) # get chunk from this rank output = output_list[rank].contiguous() return output def loss_func(output_tensor): args = get_args() query_logits, context_logits = output_tensor micro_batch_size = query_logits.shape[0] # recall we assert that tensor_model_parallel_size == 1 assert mpu.get_tensor_model_parallel_world_size() == 1, \ "Model parallel size > 1 not supported for ICT" global_batch_size = dist.get_world_size() * micro_batch_size all_query_logits = AllgatherFromDataParallelRegion.apply(query_logits) all_context_logits = AllgatherFromDataParallelRegion.apply(context_logits) # scores are inner products between query and context embeddings retrieval_scores = torch.matmul(all_query_logits, torch.transpose(all_context_logits, 0, 1)) # scaling the retriever scores if args.retriever_score_scaling: retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size) softmax_scores = F.log_softmax(retrieval_scores, dim=1) sorted_vals, sorted_indices = torch.topk(softmax_scores, k=softmax_scores.shape[1], sorted=True) def topk_accuracy(k): return torch.cuda.FloatTensor([sum([int(i in sorted_indices[i, :k]) \ for i in range(global_batch_size)]) / global_batch_size]) topk_accs = [topk_accuracy(int(k)) for k in args.retriever_report_topk_accuracies] labels = torch.arange(global_batch_size).long().cuda() loss = F.nll_loss(softmax_scores, labels, reduction='mean') reduced_losses = average_losses_across_data_parallel_group([loss, *topk_accs]) # Scale the retrieval loss loss = loss * mpu.get_data_parallel_world_size() # create stats_dict with retrieval loss and all specified top-k accuracies topk_acc_dict = {'top{}_acc'.format(k): v * 100 for k, v in \ zip(args.retriever_report_topk_accuracies, reduced_losses[1:])} stats_dict = dict(loss=reduced_losses[0], **topk_acc_dict) return loss, stats_dict def forward_step(data_iterator, model): """Forward step.""" timers = get_timers() # Get the batch. timers('batch-generator', log_level=2).start() query_tokens, query_mask, \ context_tokens, context_mask, context_indices = get_ict_batch(data_iterator) timers('batch-generator').stop() # Query and Context Types query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0) context_types = torch.cuda.LongTensor(*context_tokens.shape).fill_(0) # Forward model. output_tensor = model(query_tokens, query_mask, query_types, context_tokens, context_mask, context_types) return output_tensor, partial(loss_func) def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid and test datasets.""" args = get_args() print_rank_0('> building train, validation, and test datasets ' 'for BERT ICT...') train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, max_seq_length=args.seq_length, masked_lm_prob=args.mask_prob, short_seq_prob=args.short_seq_prob, seed=args.seed, skip_warmup=(not args.mmap_warmup), binary_head=False, dataset_type='ict') print_rank_0("> finished creating BERT ICT datasets ...") return train_ds, valid_ds, test_ds if __name__ == "__main__": ict_model_type = ModelType.encoder_or_decoder args_defaults = {'tokenizer_type': 'BertWordPieceLowerCase'} megatron.initialize.initialize_megatron(extra_args_provider=None, args_defaults=args_defaults) args = megatron.get_args() megatron.training.pretrain(args, train_valid_test_datasets_provider, pretrain_ict_model_provider, ict_model_type, forward_step)