# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Evaluation utilities.""" import os import time from functools import partial import torch from megatron import get_args from megatron import print_rank_last, is_last_rank from megatron.core import mpu from megatron.schedules import get_forward_backward_func import tasks.finetune_utils def accuracy_func_provider(single_dataset_provider): """Provide function that calculates accuracies.""" args = get_args() # Build dataloaders. datapaths = args.valid_data dataloaders = [] for datapath in datapaths: dataset = single_dataset_provider(datapath) dataloader = tasks.finetune_utils.build_data_loader( dataset, args.orig_micro_batch_size, num_workers=args.num_workers, drop_last=(mpu.get_data_parallel_world_size() > 1)) dataloaders.append((dataset.dataset_name, dataloader)) def metrics_func(model, epoch, output_predictions=False): print_rank_last('calculating metrics ...') correct = 0 total = 0 if output_predictions: assert mpu.get_data_parallel_world_size() == 1 named_predictions = [] names = 'predictions' for name, dataloader in dataloaders: output = calculate_correct_answers(name, model, dataloader, epoch, output_predictions) if not output_predictions: correct_ans, total_count = output else: correct_ans, total_count, predictions = output named_predictions.append((name, predictions)) names += '_' + name correct += correct_ans total += total_count if is_last_rank(): percent = float(correct) * 100.0 / float(total) print(' >> |epoch: {}| overall: correct / total = {} / {} = ' '{:.4f} %'.format(epoch, correct, total, percent)) if output_predictions and is_last_rank(): assert args.load is not None filename = os.path.join(args.load, names + '.pt') torch.save(named_predictions, filename) return metrics_func def calculate_correct_answers(name, model, dataloader, epoch, output_predictions): """Calculate correct over total answers and return prediction if the `output_predictions` is true.""" args = get_args() forward_backward_func = get_forward_backward_func() start_time = time.time() for m in model: m.eval() saved_micro_batch_size = args.micro_batch_size saved_global_batch_size = args.global_batch_size ds = dataloader.dataset if hasattr(ds, 'sample_multiplier'): # If our dataset as a sample_multiplier attribute that means # each "sample" from the dataset actually has multiple samples # that will collapse into the batch dimension (for example in # the RACE dataset that has several options), we need to # account for that when setting the micro batch size. sample_multiplier = ds.sample_multiplier else: sample_multiplier = 1 micro_batch_size_times_data_parallel = args.orig_micro_batch_size * args.data_parallel_size num_micro_batches = args.orig_global_batch_size // micro_batch_size_times_data_parallel def loss_func(output_predictions, labels, output_tensor): logits = output_tensor loss_dict = {} # Add output predictions. if output_predictions: assert False loss_dict['softmaxes'] = torch.nn.Softmax(dim=-1)( logits.float()).data.cpu().numpy().tolist() loss_dict['labels'] = labels.data.cpu().numpy().tolist() loss_dict['ids'] = batch['uid'].cpu().numpy().tolist() # Compute the correct answers. predicted = torch.argmax(logits, dim=-1) corrects = (predicted == labels) # Add to the counters. loss_dict['total'] = labels.size(0) loss_dict['correct'] = corrects.sum().item() return 0, loss_dict # defined inside to capture output_predictions def correct_answers_forward_step(batch, model): try: batch_ = next(batch) except BaseException: batch_ = batch tokens, types, labels, attention_mask = tasks.finetune_utils.process_batch(batch_, args.fp16) # Forward model. args = get_args() output_tensor = model(tokens, attention_mask, tokentype_ids=types) return output_tensor, partial(loss_func, output_predictions, labels) with torch.no_grad(): # For all the batches in the dataset. total = 0 correct = 0 if output_predictions: # This option is only possible when data parallel size is 1. assert mpu.get_data_parallel_world_size() == 1 softmaxes = [] labels = [] ids = [] for _, batch in enumerate(dataloader): # For evaluation only mode we use drop_last = False to get all the # samples, which means we might not have a full batch, so we # adjust batch_size here to actual batch size of data actual_batch_size = len(batch['label']) # ... applying sample_multiplier if necessary args.micro_batch_size = actual_batch_size * sample_multiplier args.global_batch_size = actual_batch_size * sample_multiplier * num_micro_batches loss_dicts = forward_backward_func(correct_answers_forward_step, batch, model, optimizer=None, timers=None, forward_only=True) for loss_dict in loss_dicts: if output_predictions: softmaxes.extend(loss_dict['softmaxes']) labels.extend(loss_dict['labels']) ids.extend(loss_dict['ids']) total += loss_dict['total'] correct += loss_dict['correct'] for m in model: m.train() args.micro_batch_size = saved_micro_batch_size args.global_batch_size = saved_global_batch_size # Reduce. if mpu.is_pipeline_last_stage(): unreduced = torch.cuda.LongTensor([correct, total]) torch.distributed.all_reduce(unreduced, group=mpu.get_data_parallel_group()) # Print on screen. correct_ans = unreduced[0].item() total_count = unreduced[1].item() percent = float(correct_ans) * 100.0 / float(total_count) elapsed_time = time.time() - start_time print_rank_last(' > |epoch: {}| metrics for {}: correct / total ' '= {} / {} = {:.4f} %, elapsed time (sec): {:.3f}'.format( epoch, name, correct_ans, total_count, percent, elapsed_time)) if output_predictions: return correct_ans, total_count, (softmaxes, labels, ids) return correct_ans, total_count if output_predictions: return 0, 0, () return 0, 0