# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Main tasks functionality.""" import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from megatron import get_args import megatron.initialize def get_tasks_args(parser): """Provide extra arguments required for tasks.""" group = parser.add_argument_group(title='tasks') group.add_argument('--task', type=str, required=True, help='Task name.') group.add_argument('--epochs', type=int, default=None, help='Number of finetunning epochs. Zero results in ' 'evaluation only.') group.add_argument('--pretrained_checkpoint', type=str, default=None, help='Pretrained checkpoint used for finetunning.') group.add_argument('--keep_last', action='store_true', help='Keep the last batch (maybe incomplete) in' 'the data loader') group.add_argument('--train_data', nargs='+', default=None, help='Whitespace separated paths or corpora names ' 'for training.') group.add_argument('--valid_data', nargs='*', default=None, help='path(s) to the validation data.') group.add_argument('--overlapping_eval', type=int, default=32, help='Sliding window for overlapping evaluation.') group.add_argument('--strict_lambada', action='store_true', help='Use more difficult formulation of lambada.') # Retriever args group.add_argument('--qa_data_dev', type=str, default=None, help='Path to the QA dataset dev file.') group.add_argument('--qa_data_test', type=str, default=None, help='Path to the QA dataset test file.') # Faiss arguments for retriever group.add_argument('--faiss_use_gpu', action='store_true', help='Whether create the FaissMIPSIndex on GPU') group.add_argument('--faiss_match', type=str, default='string', \ choices=['regex', 'string'], help="Answer matching '\ 'logic type") group.add_argument('--faiss_topk_retrievals', type=int, default=100, help='Number of blocks to use as top-k during retrieval') # finetune for retriever group.add_argument('--eval_micro_batch_size', type=int, default=None, help='Eval Batch size per model instance (local batch ' 'size). Global batch size is local batch size ' 'times data parallel size.') group.add_argument('--train_with_neg', action='store_true', help='Whether to use negative examples during model training') group.add_argument('--train_hard_neg', type=int, default=0, help='Number of hard negative exmaples to use during ' 'training') # parameters for Av.rank validation method # Following options/arguments have been taken directly from DPR codebase group.add_argument('--val_av_rank_hard_neg', type=int, default=30, help='Av.rank validation: how many hard negatives to' ' take from each question pool') group.add_argument('--val_av_rank_other_neg', type=int, default=30, help='Av.rank validation: how many other negatives to' ' take from each question pool') return parser if __name__ == '__main__': megatron.initialize.initialize_megatron(extra_args_provider=get_tasks_args) args = get_args() if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for downstream tasks.") exit() if args.task == 'RACE': from race.finetune import main elif args.task in ['MNLI', 'QQP']: from glue.finetune import main elif args.task in ['LAMBADA', 'WIKITEXT103']: from zeroshot_gpt.evaluate import main elif args.task in ['ICT-ZEROSHOT-NQ', 'RETRIEVER-EVAL']: from orqa.evaluate_orqa import main elif args.task in ['RET-FINETUNE-NQ']: from orqa.supervised.finetune import main else: raise NotImplementedError('Task {} is not implemented.'.format( args.task)) main()