# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets""" import torch import argparse from nltk import word_tokenize from tqdm import tqdm import numpy as np import json def get_args(): parser = argparse.ArgumentParser(description="Preprocessing") parser.add_argument("--func", type=str, default=None, help="choose to run which function") parser.add_argument("--raw_file", type=str, default=None, help="path of the input file") parser.add_argument("--processed_file", type=str, default=None, help="path of the output file") parser.add_argument("--knwl_ref_file", type=str, default=None, help="path of the knowledge reference file") parser.add_argument("--resp_ref_file", type=str, default=None, help="path of the knowledge reference file") parser.add_argument("--knwl_gen_file", type=str, default=None, help="path of the generated knowledge file") parser.add_argument("--test_file", type=str, default=None, help="path of the test file") parser.add_argument("--train_file", type=str, default=None, help="path of the train file") parser.add_argument("--model_file", type=str, default=None, help="path of the model file") parser.add_argument("--data_type", type=str, default=None, help="data types, choose one out of three types: \ wow_seen, wow_unseen, and woi") parser.add_argument("--seed", type=int, default=1234, help="random seed") args = parser.parse_args() return args def process_wow_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file): """ This is a function used for processing the wizard of wikipedia (wow) dataset Expected processed format: topic \t dialogue context \t golden knowledge \t golden response """ # loading the raw data print("> Loading data from %s" % raw_file) with open(raw_file, "r") as fr: dialog_data = json.load(fr) print("> Processing data ...") fproc = open(processed_file, "w") fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None fresp = open(resp_ref_file, "w") if resp_ref_file else None for i, sample in enumerate(tqdm(dialog_data)): # get all the dialog data for a single dialog sample dialog = sample["dialog"] turn_list = [] # collect the dialog history # processing for each single dialog sample for j, turn in enumerate(dialog): # text of each turn text = turn["text"] if not (text.endswith("?") or text.endswith(".") or text.endswith("!")): text = text + "." if j == 0: # first turn turn_list.append(text) continue speaker = turn["speaker"].lower() if "wizard" in speaker: checked_sentence = list(turn["checked_sentence"].values()) # knowledge checked_passage = list(turn["checked_passage"].values()) # topic assert len(checked_sentence) <= 1 # get the ground truth knowledge if len(checked_sentence) > 0: checked_sentence = checked_sentence[0] else: checked_sentence = "no_passages_used" if len(checked_passage) == 1: checked_passage = checked_passage[0] else: checked_passage = "no_passages_used" # get the topic if checked_passage != "no_passages_used": topic = checked_passage else: topic = sample["chosen_topic"] dialog_context = " [SEP] ".join(turn_list) knowledge = checked_sentence response = text # add the response into the dialog history turn_list.append(response) # write to the output files fproc.write(topic + "\t" + dialog_context + "\t" + \ knowledge + "\t" + response + "\n") if fknwl: fknwl.write(knowledge + "\n") if fresp: # tokenize for evaluation response = " ".join(word_tokenize(response)) fresp.write(response + "\n") else: assert "apprentice" in speaker turn_list.append(text) fproc.close() if fknwl: fknwl.close() if fresp: fresp.close() def process_woi_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file): """ This is a function used for processing the wizard of internet (woi) dataset Expected processed format: topic \t dialogue context \t golden knowledge \t golden response """ print("> Processing %s" % raw_file) fproc = open(processed_file, "w") fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None fresp = open(resp_ref_file, "w") if resp_ref_file else None with open(raw_file, "r") as fr: for i, line in tqdm(enumerate(fr)): # read line by line, each line uses json format line = line.strip() item_dict = json.loads(line) # item_dict is a dictionary # its key is the data id, and its value contains all the data content item_dict = item_dict.values() item_dict = list(item_dict)[0] # len(item_dict) == 1 # get the whole dialog data for a single dialog sample dialog_data = item_dict['dialog_history'] length = len(dialog_data) turn_list = [] # collect the dialog history search_text = "" for i in range(length): item = dialog_data[i] action = item['action'] if action == "Wizard => SearchAgent": search_text = item['text'] elif action == "Wizard => Apprentice": if len(turn_list) == 0: # first turn turn = item['text'] turn_list.append(turn) continue # get the relevant content contents = item["context"]["contents"] selects = item["context"]["selected_contents"] flag = selects[0][0] selects = selects[1:] assert len(selects) == len(contents) # get the topic if flag: # no knowledge sentence is used for the response topic = "no_topic" knwl_sent = "no_passages_used" else: # we consider the search text as the topic topic = search_text # get the knowledge sentence knwl_sent = "" for content, select in zip(contents, selects): content = content['content'] assert len(content) == len(select) for c, s in zip(content, select): if s: knwl_sent = c break if knwl_sent == "": # no knowledge is used for the response topic = "no_topic" knwl_sent = "no_passages_used" # get dialogue context, knowledge, and response dialog_context = " [SEP] ".join(turn_list) response = item['text'] # processing topic = topic.replace("\n", "").replace("\r", \ "").replace("\t", "") dialog_context = dialog_context.replace("\n", "").replace("\r", \ "").replace("\t", "") knwl_sent = knwl_sent.replace("\n", "").replace("\r", \ "").replace("\t", "") response = response.replace("\n", "").replace("\r", \ "").replace("\t", "") if topic != "no_topic": # write to the ouput files fproc.write(topic + "\t" + dialog_context + "\t" + \ knwl_sent + "\t" + response + "\n") if fknwl: fknwl.write(knwl_sent + "\n") if fresp: # tokenize for evaluation response = " ".join(word_tokenize(response)) fresp.write(response + "\n") turn_list.append(response) elif action == "Apprentice => Wizard": turn = item['text'] turn_list.append(turn) else: assert action == "SearchAgent => Wizard", \ "Please check whether you have used the correct data!" fproc.close() if fknwl: fknwl.close() if fresp: fresp.close() def get_database(test_datapath, train_datapath, data_type): """Get the database by topics""" assert data_type in ["wow_seen", "wow_unseen", "woi"], \ "Please input a correct data type!!" # get test data topic dictionary print("> reading test data from %s" % test_datapath) test_topics = {} with open(test_datapath, "r") as f: for i, line in enumerate(f): line = line.strip() splits = line.split("\t") topic = splits[0] test_topics[topic] = True print("> reading data from %s" % train_datapath) train_data_by_topic = {} dialog_data_by_topic = {} dialog_examples = [] with open(train_datapath, "r") as f: for i, line in enumerate(f): line = line.strip() splits = line.split("\t") topic = splits[0] turns = splits[1].split(" [SEP] ")[-3:] knowledge = splits[2] response = splits[3] # filtering data samples if knowledge == "no_passages_used": # when no knowledge is used continue if data_type != "wow_seen" and ("(" in knowledge or ")" in knowledge): # when bracket exists in the knowledge continue if data_type != "wow_seen" and topic not in knowledge: # when topic does not exist in the knowledge continue # get the instance last_turn = turns[-1] instance = "( " + last_turn + " ) " + topic + " => " + knowledge # construct dialog example dialog_example = "" if data_type != "wow_seen": dialog_example += "( " + topic + " ) " for i, turn in enumerate(turns): if i != 0: dialog_example += " " dialog_example += turn # check overlaps if topic in test_topics: if topic not in train_data_by_topic: train_data_by_topic[topic] = [instance] else: train_data_by_topic[topic].append(instance) if topic not in dialog_data_by_topic: dialog_data_by_topic[topic] = [dialog_example] else: dialog_data_by_topic[topic].append(dialog_example) else: # filtering data samples if len(knowledge.split()) > 20: # knowledge is too long continue if knowledge.startswith("It") or knowledge.startswith("it") or \ knowledge.startswith("This") or knowledge.startswith("this"): continue # append all the data into dialogue examples list dialog_examples.append((topic, dialog_example, instance)) return train_data_by_topic, dialog_data_by_topic, dialog_examples emb_dict = {} def select_prompts_based_on_similarity( query, dialog_list, prompt_list, topic, tokenizer, encoder, topk): """Select samples based on the similarity""" with torch.no_grad(): # get the query embeddings query_ids = tokenizer.encode(query) query_ids = torch.LongTensor([query_ids]).cuda() query_emb = encoder(input_ids=query_ids).pooler_output query_emb = query_emb[0] # calculate embeddings for the samples in the database if topic in emb_dict: example_embeddings = emb_dict[topic] example_embeddings = example_embeddings.cuda() else: for idx, example in enumerate(dialog_list): example_ids = tokenizer.encode(example) example_ids = torch.LongTensor([example_ids]).cuda() example_emb = encoder(input_ids=example_ids).pooler_output if idx == 0: example_embeddings = example_emb else: example_embeddings = torch.cat( (example_embeddings, example_emb), dim=0) emb_dict[topic] = example_embeddings.cpu() # compare the similarity and select the topk samples similarity_list = example_embeddings.matmul(query_emb) _, indices = torch.topk(similarity_list, k=topk) indices = indices.tolist() indices = indices[::-1] # reverse the order selected_prompts = [] for index in indices: # index = index.item() selected_prompts.append(prompt_list[index]) return selected_prompts def prompt_selection_for_knowledge_generation( test_datapath, train_datapath, model_path, output_prompt_path, data_type): """Selecting prompts for the knowledge generation""" print("> Selecting prompts for the knowledge generation") train_data_by_topic, dialog_data_by_topic, dialog_examples = \ get_database(test_datapath, train_datapath, data_type) from transformers import DPRQuestionEncoderTokenizer print("> loading tokenizer and encoder") tokenizer = DPRQuestionEncoderTokenizer.from_pretrained( 'facebook/dpr-question_encoder-single-nq-base') encoder = torch.load(model_path).cuda() print("> getting dialog embeddings") with torch.no_grad(): for idx, example in tqdm(enumerate(dialog_examples)): dialog = example[1] dialog_ids = tokenizer.encode(dialog) dialog_ids = torch.LongTensor([dialog_ids]).cuda() dialog_emb = encoder(input_ids=dialog_ids).pooler_output if idx == 0: dialog_embeddings = dialog_emb else: dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0) print("> reading test data from %s" % test_datapath) prompt_list_for_each_sample = [] with open(test_datapath, "r") as f: for i, line in tqdm(enumerate(f)): line = line.strip() splits = line.split("\t") topic = splits[0] turns = splits[1].split(" [SEP] ")[-3:] # get the query sentence query_sent = "" if data_type != "seen": query_sent += "( " + topic + " ) " for i, turn in enumerate(turns): if i != 0: query_sent += " " query_sent += turn if topic not in train_data_by_topic: # get the query embedding query_ids = tokenizer.encode(query_sent) query_ids = torch.LongTensor([query_ids]).cuda() query_emb = encoder(input_ids=query_ids).pooler_output query_emb = query_emb[0] # calculate the similarity similarity_list = dialog_embeddings.matmul(query_emb) _, indices = torch.sort(similarity_list) indices = indices.tolist() selected_topics = {} selected_prompts = [] num_prompt = 0 for index in indices: example = dialog_examples[index] topic_temp = example[0] if topic_temp not in selected_topics: selected_topics[topic_temp] = True selected_prompts.append(example[2]) num_prompt += 1 if num_prompt == 10: break # get the selected samples example_list = selected_prompts[::-1] key = topic + " " + turns[-1] prompt_list_for_each_sample.append({key: example_list}) else: num_data_sample = min(len(train_data_by_topic[topic]), 10) total_example_list = train_data_by_topic[topic] dialog_list = dialog_data_by_topic[topic] assert len(dialog_list) == len(train_data_by_topic[topic]) # calculate the similarity example_list = select_prompts_based_on_similarity( query_sent, dialog_list, total_example_list, topic, tokenizer, encoder, topk=num_data_sample) key = topic + " " + turns[-1] prompt_list_for_each_sample.append({key: example_list}) print("writing to %s" % output_prompt_path) with open(output_prompt_path, "w") as f: for instance in tqdm(prompt_list_for_each_sample): json.dump(instance, f) f.write("\n") def prompt_selection_for_response_generation(input_path, output_path, seed): """Selecting prompts for the response generation""" print("> Selecting prompts for the response generation") print("> set random seed") np.random.seed(seed) prompt_example_list = [] print("> reading data from %s" % input_path) with open(input_path, "r") as f: for i, line in tqdm(enumerate(f)): line = line.strip() splits = line.split("\t") # get the topic, context, knowledge and response topic = splits[0] dialog_context = splits[1] knowledge = splits[2] response = splits[3] turns = dialog_context.split(" [SEP] ")[-3:] if knowledge == "no_passages_used": continue # calculate the overlap ratio from nltk import word_tokenize knowledge_sent_token_list = word_tokenize(knowledge) knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list} knowledge_len = len(knowledge_sent_token_list) response_token_list = word_tokenize(response) response_len = len(response_token_list) num_overlap_token = 0 accumulator = 0 for token in response_token_list: if token in knowledge_sent_token_dict: accumulator += 1 else: if accumulator >= 10: num_overlap_token += accumulator accumulator = 0 if accumulator >= 10: num_overlap_token += accumulator # filtering the data based on the ratio if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6: continue if num_overlap_token < knowledge_len * 0.8: continue last_turn = " ".join(word_tokenize(turns[-1])) knowledge = " ".join(word_tokenize(knowledge)) response = " ".join(word_tokenize(response)) prompt_example = "" # add dialog context prompt_example += "Topic: " + topic + ". " prompt_example += "User says: " + last_turn + " " prompt_example += "We know that: " + knowledge + " " prompt_example += "System replies: " + response prompt_example_list.append(prompt_example) # shuffle the prompt examples np.random.shuffle(prompt_example_list) print("> writing to %s" % output_path) with open(output_path, "w") as f: # f.write("Generate the System's response based on the knowledge sentence:\n") for i in tqdm(range(20)): example = prompt_example_list[i] f.write(example + "\n") def prepare_input_for_response_generation(test_file, knwl_gen_file, processed_file): """Preparing inputs for the response generation""" print("> Reading knowledge file from %s" % knwl_gen_file) # get the knowledge list with open(knwl_gen_file, "r") as f: knowledge_list = f.readlines() print("> Processing ...") with open(test_file, "r") as fr: with open(processed_file, "w") as fw: for line_num, line in enumerate(tqdm(fr)): line = line.strip() splits = line.split("\t") # prepare topic, context, knowledge and response topic = splits[0] dialog_context = splits[1] response = splits[3] knowledge = knowledge_list[line_num] knowledge = knowledge.strip() if "<|endoftext|>" in knowledge: knowledge = knowledge.replace("<|endoftext|>", "") # write to the output file fw.write(topic + "\t" + dialog_context + "\t" \ + knowledge + "\t" + response + "\n") if __name__ == "__main__": args = get_args() if args.func == "process_wow_dataset": process_wow_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file) elif args.func == "process_woi_dataset": process_woi_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file) elif args.func == "get_knwl_gen_prompts": prompt_selection_for_knowledge_generation( args.test_file, args.train_file, args.model_file, args.processed_file, args.data_type) elif args.func == "get_resp_gen_prompts": prompt_selection_for_response_generation( args.train_file, args.processed_file, args.seed) elif args.func == "prepare_input": prepare_input_for_response_generation( args.test_file, args.knwl_gen_file, args.processed_file)