# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """ Data Loader for Google NQ dataset """ from abc import ABC import csv from collections import OrderedDict import numpy as np import torch from torch.utils.data import DataLoader from torch.utils.data import Dataset, BatchSampler from megatron import print_rank_0, get_args, get_tokenizer from megatron.data.biencoder_dataset_utils import make_attention_mask def get_nq_dataset(qa_data, split): args = get_args() tokenizer = get_tokenizer() dataset = NQDataset('Google NQ {} Split'.format(split), 'Google Natural Questions', qa_data, tokenizer, args.retriever_seq_length) return dataset def process_nq_batch(batch): query_tokens = batch['token_ids'].long().cuda() query_mask = (batch['token_mask'] < 0.5).cuda() query_types = batch['token_types'].long().cuda() query_len = batch['seq_len'].long().cuda() reference = batch['reference'] return query_tokens, query_mask, query_types, query_len, reference class CustomDataLoader(DataLoader): def __init__(self, dataset, eval=False, **kwargs): if kwargs.get('collate_fn', None) is None: kwargs['collate_fn'] = self._collate_fn self.eval = eval super().__init__(dataset, **kwargs) def _collate_fn(self, batch_data): # generate batch batch_size = len(batch_data) tensorized = OrderedDict() for d in batch_data: for k, v in d.items(): tensorized.setdefault(k, []).append(v) assert len(tensorized) == 5 tensorized['token_ids'] = torch.LongTensor(tensorized['token_ids']) tensorized['token_mask'] = torch.LongTensor(tensorized['token_mask']) tensorized['token_types'] = torch.LongTensor(tensorized['token_types']) tensorized['seq_len'] = torch.LongTensor(tensorized['seq_len']) return tensorized def get_one_epoch_nq_dataloader(dataset, micro_batch_size=None): """Data loader. Note that batch-size is the local (per GPU) batch-size. NOTE: This dataloader is not distributed !!! """ args = get_args() if micro_batch_size is None: micro_batch_size = args.micro_batch_size num_workers = args.num_workers sampler = torch.utils.data.SequentialSampler(dataset) # importantly, drop_last must be False to get all the data. batch_sampler = BatchSampler(sampler, batch_size=micro_batch_size, drop_last=False) # Data loader. Note that batch size is the per GPU batch size. data_loader = CustomDataLoader(dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True) return data_loader def build_tokens_types_paddings_from_text(src_text, tokenizer, max_seq_length): """Build token types and paddings, trim if needed, and pad if needed.""" src_text_ids = tokenizer.tokenize(src_text) return build_tokens_types_paddings_from_ids(src_text_ids, max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad) def build_tokens_types_paddings_from_ids(src_ids, max_seq_length, cls_id, \ sep_id, pad_id): """ Build token types and paddings, trim if needed, and pad if needed. TODO: Design modular interface to reuse this function. This is getting repeated multiple times in different tasks """ enc_ids = [] tokentypes_enc = [] # [CLS]. enc_ids.append(cls_id) tokentypes_enc.append(0) # A. len_src = len(src_ids) enc_ids.extend(src_ids) tokentypes_enc.extend([0] * len_src) # Cap the size. if len(enc_ids) > max_seq_length - 1: enc_ids = enc_ids[0: max_seq_length - 1] tokentypes_enc = tokentypes_enc[0: max_seq_length - 1] # [SEP]. enc_ids.append(sep_id) tokentypes_enc.append(0) num_tokens_enc = len(enc_ids) # Padding. padding_length = max_seq_length - len(enc_ids) if padding_length > 0: enc_ids.extend([pad_id] * padding_length) tokentypes_enc.extend([pad_id] * padding_length) return enc_ids, tokentypes_enc, num_tokens_enc def build_sample(token_ids, token_types, num_tokens, reference): """ Convert to numpy and return a sample consumed by the batch producer. """ token_ids = np.array(token_ids, dtype=np.int64) token_types = np.array(token_types, dtype=np.int64) token_mask = make_attention_mask(token_ids, token_ids) sample = ({ 'token_ids': token_ids, 'token_mask': token_mask, 'token_types': token_types, 'seq_len': num_tokens, 'reference': reference }) return sample class NQDataset(ABC, Dataset): """ Open Retrieval Question Answering evaluation using Google NQ dataset. """ def __init__(self, task_name, dataset_name, datapath, tokenizer, max_seq_length): # Store inputs. self.task_name = task_name self.dataset_name = dataset_name self.tokenizer = tokenizer self.max_seq_length = max_seq_length print_rank_0(' > building {} dataset for {}:'.format(self.task_name, self.dataset_name)) print_rank_0(datapath) self.samples = self.process_samples_from_single_path(datapath) print_rank_0(' >> total number of samples: {}'.format(\ len(self.samples))) def __len__(self): return len(self.samples) def __getitem__(self, idx): raw_sample = self.samples[idx] ques_tokens, tokentypes_enc, num_tokens_ques = \ build_tokens_types_paddings_from_text(raw_sample['question'], self.tokenizer, self.max_seq_length) sample = build_sample(ques_tokens, tokentypes_enc, num_tokens_ques, raw_sample['answers']) return sample @staticmethod def process_samples_from_single_path(filename): print_rank_0(' > Processing {} ...'.format(filename)) samples = [] total = 0 with open(filename, 'r') as ifile: reader = csv.reader(ifile, delimiter='\t') for row in reader: question = row[0] answers = eval(row[1]) sample = {'question': question, 'answers': answers} total += 1 samples.append(sample) if total % 1000 == 0: print_rank_0(' > processed {} so far ...'.format(total)) print_rank_0(' >> processed {} samples.'.format(len(samples))) return samples