# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """GPT zero-shot evaluation.""" import math import torch from megatron import get_args from megatron import print_rank_0, is_last_rank from megatron import get_tokenizer from megatron.core import parallel_state, tensor_parallel from megatron.checkpointing import load_checkpoint from megatron.model import GPTModel from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model from megatron.p2p_communication import recv_forward, send_forward import tasks.finetune_utils import megatron.training from .datasets import build_dataset # These are needed to unwrap the model, would be nice to put these in megatron.utils if possible? from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from megatron.model import DistributedDataParallel as LocalDDP from megatron.model import Float16Module def _get_model_provider(eval_metric): """Based on evaluation metric set the parallel-output flag and return the model provider.""" def model_provider(pre_process=True, post_process=True): """Build the model.""" if eval_metric == 'loss': parallel_output = True elif eval_metric == 'accuracy': parallel_output = False else: raise NotImplementedError('output type for {} evaluation metric ' 'is not supported.'.format(eval_metric)) print_rank_0('building GPT model ...') model = GPTModel(num_tokentypes=0, parallel_output=parallel_output, pre_process=pre_process, post_process=post_process) return model return model_provider def process_batch(batch): """Process batch and produce inputs for the model.""" args = get_args() tokenizer = get_tokenizer() loss_mask = batch['pad_mask'].long().cuda().contiguous().byte() tokens_ = batch['text'].long().cuda().contiguous() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, _, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss) return tokens, labels, attention_mask, position_ids, loss_mask def forward_step(batch, model, eval_metric): """Forward step.""" # Get the batch. tokens, labels, attention_mask, position_ids, loss_mask = process_batch( batch) # Tell the model what our actual batch size will be args = get_args() args.micro_batch_size = len(labels) input_tensor = recv_forward() # Forward pass through the model. unwrapped_model = unwrap_model( model, (torchDDP, LocalDDP, Float16Module)) unwrapped_model.set_input_tensor(input_tensor) output = model(tokens, position_ids, attention_mask) send_forward(output) if parallel_state.is_pipeline_last_stage(): # For loss, return the unreduced loss. if eval_metric == 'loss': losses = tensor_parallel.vocab_parallel_cross_entropy( output.contiguous().float(), labels.contiguous()) loss = torch.sum( losses.view(-1) * loss_mask.contiguous().view(-1).float()) return loss # For accuracy, return the number of correctly predicted samples. if eval_metric == 'accuracy': outputs = torch.argmax(output, -1) correct = (outputs == labels).float() correct[(1 - loss_mask).bool()] = 1 correct = correct.prod(-1) return correct.sum() raise NotImplementedError('forward method for evaluation metric {} ' 'is not implemented.'.format(eval_metric)) return None def evaluate(data_loader, model, eval_metric): """Evaluation.""" args = get_args() # Turn on evaluation mode which disables dropout. model.eval() total_output = 0.0 with torch.no_grad(): # For all the batches in the dataset. for iteration, batch in enumerate(data_loader): if iteration % args.log_interval == 0: print_rank_0('> working on iteration: {}'.format(iteration)) # Forward evaluation. output = forward_step(batch, model, eval_metric) # Reduce across processes. if parallel_state.is_pipeline_last_stage(): torch.distributed.all_reduce(output, group=parallel_state.get_data_parallel_group()) total_output += output return total_output def _evaluate_and_print_results(task, data_loader, model, eval_metric): """Evaluate and print results on screen.""" # Evaluate and get results. output = evaluate(data_loader, model, eval_metric) string = ' validation results on {} | '.format(task) if is_last_rank(): if eval_metric == 'loss': num_tokenized_tokens = data_loader.dataset.num_tokenized_tokens num_original_tokens = data_loader.dataset.num_original_tokens val_loss = output / (num_tokenized_tokens - 1) ppl = math.exp(min(20, val_loss)) token_ratio = (num_tokenized_tokens - 1) / (num_original_tokens - 1) adjusted_ppl = math.exp(min(20, val_loss * token_ratio)) string += 'avg loss: {:.4E} | '.format(val_loss) string += 'ppl: {:.4E} | '.format(ppl) string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl) string += 'token ratio: {} |'.format(token_ratio) elif eval_metric == 'accuracy': num_examples = len(data_loader.dataset) acc = output / num_examples string += 'number correct: {:.4E} | '.format(output) string += 'total examples: {:.4E} | '.format(num_examples) string += 'avg accuracy: {:.4E}'.format(acc) else: raise NotImplementedError('evaluation method for {} metric is not ' 'implemented yet.'.format(eval_metric)) length = len(string) + 1 print('-' * length) print(string) print('-' * length) def main(): """Main program.""" args = get_args() if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for text generation.") exit() if args.task == 'LAMBADA': eval_metric = 'accuracy' elif args.task == 'WIKITEXT103': eval_metric = 'loss' else: raise NotImplementedError('{} task is not implemented.'.format( args.task)) model_provider_func = _get_model_provider(eval_metric) # Set up model and load checkpoint. model = megatron.training.get_model(model_provider_func, wrap_with_ddp=False, args=args) if args.load is not None: _ = load_checkpoint(model, None, None) assert len(model) == 1, "Above condition should have caught this" model = model[0] # Data stuff. dataset = build_dataset(args.task) dataloader = tasks.finetune_utils.build_data_loader(dataset, args.micro_batch_size, args.num_workers, drop_last=False) # Run evaluation. _evaluate_and_print_results(args.task, dataloader, model, eval_metric) print_rank_0('done :-)')