import argparse import sys import torch from transformers import AutoModelForCausalLM, AutoTokenizer def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser( description="Push checkpoints in HF transformers format to the Huggingface Hub.", epilog="Example usage: python push_to_hub.py /path/to/checkpoint --hf_repo_name your_org/model_name --dtype bf16 --auth_token hf_ba..." ) parser.add_argument( "model_name", help="Path to checkpoint or model name", type=str, ) parser.add_argument( "--dtype", help="auto (default), bf16, fp16 or fp32", type=str, default="auto", ) parser.add_argument( "--hf_repo_name", help="HuggingFace repository name", type=str, ) parser.add_argument( "--auth_token", help="User access token (HuggingFace) used for model upload", type=str, ) parser.add_argument( "--output_folder", help="Output folder path (e.g. for dtype conversion)", type=str, ) parser.add_argument( "--max_shard_size", help="Maximum size for a checkpoint before being sharded (default: 10GB)", type=str, default="10GB", ) parser.add_argument( "--unsafe", help="Disable safetensor serialization", action="store_true", default=False, ) parser.add_argument( "--rope_scaling_type", help="Overwrite rope scaling type (linear, dynamic)", type=str, default="linear", ) parser.add_argument( "--rope_scaling_factor", help="Overwrite rope scaling factor (float >1.0)", type=float, ) parser.add_argument( "--trust_remote_code", help="Allow custom model code", action="store_true", default=False, ) return parser.parse_args() def main(): args = parse_args() print(args) safe_serialization = not args.unsafe if args.dtype in ("float16", "fp16"): torch_dtype = torch.float16 elif args.dtype in ("float32", "fp32"): torch_dtype = torch.float32 elif args.dtype in ("bfloat16", "bf16"): torch_dtype = torch.bfloat16 elif args.dtype == "auto": torch_dtype = None else: print(f"Unsupported dtpye: {args.dtype}") sys.exit(1) if not args.hf_repo_name and not args.output_folder: print( "Please specify either `--hf_repo_name` to push to HF or `--output_folder` " "to export the model to a local folder." ) sys.exit(1) print(f"Loading tokenizer '{args.model_name}' ...") print() tokenizer = AutoTokenizer.from_pretrained(args.model_name) print(f"Tokenizer: {type(tokenizer).__name__} (vocab_size: {len(tokenizer):,})") print("Special tokens:") for token in tokenizer.all_special_tokens: id = tokenizer.convert_tokens_to_ids(token) print(f"{token}: {id}") print() print(f"Loading model '{args.model_name}' ({args.dtype}) ...") model = AutoModelForCausalLM.from_pretrained( args.model_name, torch_dtype=torch_dtype, trust_remote_code=args.trust_remote_code, ) print(f"Model: {type(model).__name__} (num_parameters={model.num_parameters():,})") print("Model architecture:") print(model) print() if args.rope_scaling_type is not None and args.rope_scaling_factor is not None: assert args.rope_scaling_type in ("linear", "dynamic") assert args.rope_scaling_factor >= 1.0 rope_scaling = { "type": args.rope_scaling_type, "factor": args.rope_scaling_factor, } print( f"Setting new rope_scaling config: {rope_scaling} (old: {model.config.rope_scaling})" ) model.config.rope_scaling = rope_scaling print("Model configuration:") print(model.config) print() if args.output_folder: print(f"Saving model to: {args.output_folder}") model.save_pretrained( args.output_folder, max_shard_size=args.max_shard_size, safe_serialization=safe_serialization, ) print(f"Saving tokenizer to: {args.output_folder}") tokenizer.save_pretrained(args.output_folder) if args.hf_repo_name: print(f"Uploading model to HF repository ('{args.hf_repo_name}') ...") model.push_to_hub( args.hf_repo_name, use_auth_token=args.auth_token, max_shard_size=args.max_shard_size, safe_serialization=safe_serialization, ) print(f"Uploading tokenizer to HF repository ('{args.hf_repo_name}') ...") tokenizer.push_to_hub(args.hf_repo_name, use_auth_token=args.auth_token) if __name__ == "__main__": main()