global { model_type="gemma" ducttape_output=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_gemma_2_20B repo=/mnt/data/jpombal/multilinguality_megatron external_model_dir=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_gemma_2_20B/flavio_checkpoints external_model_dir_annealing=/mnt/data/shared/multilingual_llm/experiments_megatron/continue_pretraining_gemma_2_20B/flavio_checkpoints_annealed model_path=/mnt/data_2/cache/models--google--gemma-2b/snapshots/9d067f00def958594aaa16b39a65b07d69ca655b/ tokenizer_path=/mnt/data_2/cache/models--google--gemma-2b/snapshots/9d067f00def958594aaa16b39a65b07d69ca655b tokenizer_type=PretrainedFromHF dataset=(Dataset: en de fr es it nl pt ru zh ko en_de de_en en_fr fr_en en_es es_en en_it it_en en_nl nl_en en_pt pt_en en_ru ru_en en_zh zh_en en_ko ko_en en_de_pre_annealing de_en_pre_annealing en_fr_pre_annealing fr_en_pre_annealing en_es_pre_annealing es_en_pre_annealing en_it_pre_annealing it_en_pre_annealing en_nl_pre_annealing nl_en_pre_annealing en_pt_pre_annealing pt_en_pre_annealing en_ru_pre_annealing ru_en_pre_annealing en_zh_pre_annealing zh_en_pre_annealing en_ko_pre_annealing ko_en_pre_annealing en_synth es_synth de_synth fr_synth nl_synth pt_synth it_synth ru_synth zh_synth ko_synth instructions) dataset_path=(Dataset: en=/mnt/data_2/shared/tower_llm_data/en/data en_synth="" es=/mnt/data_2/shared/tower_llm_data/es/3/0000.json.gz es_synth="" de=/mnt/data_2/shared/tower_llm_data/de/2/0000.json.gz de_synth="" fr=/mnt/data_2/shared/tower_llm_data/fr/1/0000.json.gz fr_synth="" nl=/mnt/data_2/shared/tower_llm_data/nl/0000.json.gz nl_synth="" pt=/mnt/data_2/shared/tower_llm_data/pt/0000.json.gz pt_synth="" it=/mnt/data_2/shared/tower_llm_data/it/0000.json.gz it_synth="" ru=/mnt/data_2/shared/tower_llm_data/ru/6/0000.json.gz ru_synth="" zh=/mnt/data_2/shared/tower_llm_data/zh/0000.json.gz zh_synth="" ko=/mnt/data_2/shared/tower_llm_data/ko/0000.json.gz ko_synth="" en_de="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-de/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" de_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-de/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_fr="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-fr/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" fr_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-fr/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_es="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-es/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" es_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-es/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_it="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-it/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" it_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-it/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_nl="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-nl/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" nl_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-nl/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_pt="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-pt/bicleaner_0.6_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" pt_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-pt/bicleaner_0.6_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_ru="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ru/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" ru_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ru/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_zh="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-zh/no_bicleaner_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" zh_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-zh/no_bicleaner_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" en_ko="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ko/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" ko_en="/mnt/data/shared/tower_llm_data/bilingual_data/v1/en-ko/bicleaner_0.5_cometkiwi-wmt22-cometkiwi-da/threshold_0.75" instructions="oi" en_de_pre_annealing="oi" de_en_pre_annealing="oi" en_fr_pre_annealing="oi" fr_en_pre_annealing="oi" en_es_pre_annealing="oi" es_en_pre_annealing="oi" en_it_pre_annealing="oi" it_en_pre_annealing="oi" en_nl_pre_annealing="oi" nl_en_pre_annealing="oi" en_pt_pre_annealing="oi" pt_en_pre_annealing="oi" en_ru_pre_annealing="oi" ru_en_pre_annealing="oi" en_zh_pre_annealing="oi" zh_en_pre_annealing="oi" en_ko_pre_annealing="oi" ko_en_pre_annealing="oi" ) is_hf_dataset=(Dataset: en=True es=False de=False fr=False nl=False pt=False it=False ru=False zh=False ko=False en_de=False de_en=False en_fr=False fr_en=False en_es=False es_en=False en_it=False it_en=False en_nl=False nl_en=False en_pt=False pt_en=False en_ru=False ru_en=False en_zh=False zh_en=False en_ko=False ko_en=False en_synth=False es_synth=False de_synth=False fr_synth=False nl_synth=False pt_synth=False it_synth=False ru_synth=False zh_synth=False ko_synth=False instructions="oi" en_de_pre_annealing="oi" de_en_pre_annealing="oi" en_fr_pre_annealing="oi" fr_en_pre_annealing="oi" en_es_pre_annealing="oi" es_en_pre_annealing="oi" en_it_pre_annealing="oi" it_en_pre_annealing="oi" en_nl_pre_annealing="oi" nl_en_pre_annealing="oi" en_pt_pre_annealing="oi" pt_en_pre_annealing="oi" en_ru_pre_annealing="oi" ru_en_pre_annealing="oi" en_zh_pre_annealing="oi" zh_en_pre_annealing="oi" en_ko_pre_annealing="oi" ko_en_pre_annealing="oi" ) threshold=(Dataset: en=516 es=275 de=611 fr=322 nl=649 pt=257 it=332 ru=334 zh=2041 ko=198 en_de=100000 de_en=100000 en_fr=100000 fr_en=100000 en_es=100000 es_en=100000 en_it=100000 it_en=100000 en_nl=100000 nl_en=100000 en_pt=100000 pt_en=100000 en_ru=100000 ru_en=100000 en_zh=100000 zh_en=100000 en_ko=100000 ko_en=100000 en_synth=100000 es_synth=100000 de_synth=100000 fr_synth=100000 nl_synth=100000 pt_synth=100000 it_synth=100000 ru_synth=100000 zh_synth=100000 ko_synth=100000 instructions="oi" en_de_pre_annealing="oi" de_en_pre_annealing="oi" en_fr_pre_annealing="oi" fr_en_pre_annealing="oi" en_es_pre_annealing="oi" es_en_pre_annealing="oi" en_it_pre_annealing="oi" it_en_pre_annealing="oi" en_nl_pre_annealing="oi" nl_en_pre_annealing="oi" en_pt_pre_annealing="oi" pt_en_pre_annealing="oi" en_ru_pre_annealing="oi" ru_en_pre_annealing="oi" en_zh_pre_annealing="oi" zh_en_pre_annealing="oi" en_ko_pre_annealing="oi" ko_en_pre_annealing="oi" ) # rougly 67% for mc4, 33% for total parallel data datamix_weights=( DataMix: mc4_parallel_uniform=( Dataset: en=603 es=603 de=603 fr=603 nl=603 pt=603 it=603 ru=603 zh=603 ko=603 en_de=0 de_en=0 en_fr=0 fr_en=0 en_es=0 es_en=0 en_it=0 it_en=0 en_nl=0 nl_en=0 en_pt=0 pt_en=0 en_ru=0 ru_en=0 en_zh=0 zh_en=0 en_ko=0 ko_en=0 en_synth=67 es_synth=67 de_synth=67 fr_synth=67 nl_synth=67 pt_synth=67 it_synth=67 ru_synth=67 zh_synth=67 ko_synth=67 instructions=0 en_de_pre_annealing=183 de_en_pre_annealing=183 en_fr_pre_annealing=183 fr_en_pre_annealing=183 en_es_pre_annealing=183 es_en_pre_annealing=183 en_it_pre_annealing=183 it_en_pre_annealing=183 en_nl_pre_annealing=183 nl_en_pre_annealing=183 en_pt_pre_annealing=183 pt_en_pre_annealing=183 en_ru_pre_annealing=183 ru_en_pre_annealing=183 en_zh_pre_annealing=183 zh_en_pre_annealing=183 en_ko_pre_annealing=183 ko_en_pre_annealing=183 ) ) datamix_weights_annealing=( DataMix: mc4_parallel_uniform=( Dataset: en=0 es=0 de=0 fr=0 nl=0 pt=0 it=0 ru=0 zh=0 ko=0 en_de=833 de_en=833 en_fr=833 fr_en=833 en_es=833 es_en=833 en_it=833 it_en=833 en_nl=833 nl_en=833 en_pt=833 pt_en=833 en_ru=833 ru_en=833 en_zh=833 zh_en=833 en_ko=833 ko_en=833 en_synth=0 es_synth=0 de_synth=0 fr_synth=0 nl_synth=0 pt_synth=0 it_synth=0 ru_synth=0 zh_synth=0 ko_synth=0 instructions=85000 en_de_pre_annealing=0 de_en_pre_annealing=0 en_fr_pre_annealing=0 fr_en_pre_annealing=0 en_es_pre_annealing=0 es_en_pre_annealing=0 en_it_pre_annealing=0 it_en_pre_annealing=0 en_nl_pre_annealing=0 nl_en_pre_annealing=0 en_pt_pre_annealing=0 pt_en_pre_annealing=0 en_ru_pre_annealing=0 ru_en_pre_annealing=0 en_zh_pre_annealing=0 zh_en_pre_annealing=0 en_ko_pre_annealing=0 ko_en_pre_annealing=0 ) ) # number such that final tokens for each language are around 1B n_tokens=(Dataset: en=1000000000 es=833333330 de=833333330 fr=833333330 nl=833333330 pt=833333330 it=833333330 ru=500000000 zh=13888888 ko=250000000 en_de=20000000 de_en=20000000 en_fr=20000000 fr_en=20000000 en_es=20000000 es_en=20000000 en_it=20000000 it_en=20000000 en_nl=20000000 nl_en=20000000 en_pt=20000000 pt_en=20000000 en_ru=20000000 ru_en=20000000 en_zh=20000000 zh_en=20000000 en_ko=20000000 ko_en=20000000 en_synth=20000000 es_synth=20000000 de_synth=20000000 fr_synth=20000000 nl_synth=20000000 pt_synth=20000000 it_synth=20000000 ru_synth=20000000 zh_synth=20000000 ko_synth=20000000 instructions="oi" en_de_pre_annealing="oi" de_en_pre_annealing="oi" en_fr_pre_annealing="oi" fr_en_pre_annealing="oi" en_es_pre_annealing="oi" es_en_pre_annealing="oi" en_it_pre_annealing="oi" it_en_pre_annealing="oi" en_nl_pre_annealing="oi" nl_en_pre_annealing="oi" en_pt_pre_annealing="oi" pt_en_pre_annealing="oi" en_ru_pre_annealing="oi" ru_en_pre_annealing="oi" en_zh_pre_annealing="oi" zh_en_pre_annealing="oi" en_ko_pre_annealing="oi" ko_en_pre_annealing="oi" ) is_parallel=(Dataset: en=False es=False de=False fr=False nl=False pt=False it=False ru=False zh=False ko=False en_de=True de_en=True en_fr=True fr_en=True en_es=True es_en=True en_it=True it_en=True en_nl=True nl_en=True en_pt=True pt_en=True en_ru=True ru_en=True en_zh=True zh_en=True en_ko=True ko_en=True en_synth=False es_synth=False de_synth=False fr_synth=False nl_synth=False pt_synth=False it_synth=False ru_synth=False zh_synth=False ko_synth=False instructions="oi" en_de_pre_annealing="oi" de_en_pre_annealing="oi" en_fr_pre_annealing="oi" fr_en_pre_annealing="oi" en_es_pre_annealing="oi" es_en_pre_annealing="oi" en_it_pre_annealing="oi" it_en_pre_annealing="oi" en_nl_pre_annealing="oi" nl_en_pre_annealing="oi" en_pt_pre_annealing="oi" pt_en_pre_annealing="oi" en_ru_pre_annealing="oi" ru_en_pre_annealing="oi" en_zh_pre_annealing="oi" zh_en_pre_annealing="oi" en_ko_pre_annealing="oi" ko_en_pre_annealing="oi" ) lp=(Dataset: en="" es="" de="" fr="" nl="" pt="" it="" ru="" zh="" ko="" en_de="en-de" de_en="de-en" en_fr="en-fr" fr_en="fr-en" en_es="en-es" es_en="es-en" en_it="en-it" it_en="it-en" en_nl="en-nl" nl_en="nl-en" en_pt="en-pt" pt_en="pt-en" en_ru="en-ru" ru_en="ru-en" en_zh="en-zh" zh_en="zh-en" en_ko="en-ko" ko_en="ko-en" en_synth="" es_synth="" de_synth="" fr_synth="" nl_synth="" pt_synth="" it_synth="" ru_synth="" zh_synth="" ko_synth="" instructions="oi" en_de_pre_annealing="oi" de_en_pre_annealing="oi" en_fr_pre_annealing="oi" fr_en_pre_annealing="oi" en_es_pre_annealing="oi" es_en_pre_annealing="oi" en_it_pre_annealing="oi" it_en_pre_annealing="oi" en_nl_pre_annealing="oi" nl_en_pre_annealing="oi" en_pt_pre_annealing="oi" pt_en_pre_annealing="oi" en_ru_pre_annealing="oi" ru_en_pre_annealing="oi" en_zh_pre_annealing="oi" zh_en_pre_annealing="oi" en_ko_pre_annealing="oi" ko_en_pre_annealing="oi" ) min_perplexity=0 size=(Size: 2) log_interval=1 save_interval=635 eval_interval=635 train_steps=11430 train_steps_annealing=1270 lr_scheduler=constant warmup_steps=32 lr=3e-5 lr_min=3e-6 weight_decay=0.1 lr_scheduler_annealing=linear warmup_steps_annealing=0 lr_annealing=3e-5 lr_min_annealing=3e-6 n_gpus=8 gpu_ids=0,1,2,3,4,5,6,7 tp=(TP: 1 2 3 4 5 6 7 8) pp=(PP: 1 2 3 4) micro_batch_size=24 grad_accum_steps=4 vocab_size=256000 cpu_workers=16 wikipedia=False freeze_layers="" posterior_tokens=False n_posterior_tokens=0 eval_iters=1 glu_activation=geglu kv_channels=256 layernorm_epsilon=1e-6 seq_length=2048 }