Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
0e4202f
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc0-1-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - n<1K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - intent-classification
20
+ ---
21
+
22
+ # Dataset Card for Snips Built In Intents
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents
50
+ - **Repository:** https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents
51
+ - **Paper:** https://arxiv.org/abs/1805.10190
52
+ - **Point of Contact:** The Snips team has joined Sonos in November 2019. These open datasets remain available and their access is now managed by the Sonos Voice Experience Team. Please email sve-research@sonos.com with any question.
53
+
54
+ ### Dataset Summary
55
+
56
+ Snips' built in intents dataset was initially used to compare different voice assistants and released as a public dataset hosted at
57
+ https://github.com/sonos/nlu-benchmark in folder 2016-12-built-in-intents. The dataset contains 328 utterances over 10 intent classes.
58
+ A related Medium post is https://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-d35be6ce568d.
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ There are no related shared tasks that we are aware of.
63
+
64
+ ### Languages
65
+
66
+ English
67
+
68
+ ## Dataset Structure
69
+
70
+ ### Data Instances
71
+
72
+ The dataset contains 328 utterances over 10 intent classes. Each sample looks like:
73
+ `{'label': 8, 'text': 'Transit directions to Barcelona Pizza.'}`
74
+
75
+ ### Data Fields
76
+
77
+ - `text`: The text utterance expressing some user intent.
78
+ - `label`: The intent label of the piece of text utterance.
79
+
80
+ ### Data Splits
81
+
82
+ The source data is not split.
83
+
84
+ ## Dataset Creation
85
+
86
+ ### Curation Rationale
87
+
88
+ The dataset was originally created to compare the performance of a number of voice assistants. However, the labelled utterances are useful
89
+ for developing and benchmarking text chatbots as well.
90
+
91
+ ### Source Data
92
+
93
+ #### Initial Data Collection and Normalization
94
+
95
+ It is not clear how the data was collected. From the Medium post: `The benchmark relies on a set of 328 queries built by the business team
96
+ at Snips, and kept secret from data scientists and engineers throughout the development of the solution.`
97
+
98
+ #### Who are the source language producers?
99
+
100
+ Originally prepared by snips.ai. The Snips team has since joined Sonos in November 2019. These open datasets remain available and their
101
+ access is now managed by the Sonos Voice Experience Team. Please email sve-research@sonos.com with any question.
102
+
103
+ ### Annotations
104
+
105
+ #### Annotation process
106
+
107
+ It is not clear how the data was collected. From the Medium post: `The benchmark relies on a set of 328 queries built by the business team
108
+ at Snips, and kept secret from data scientists and engineers throughout the development of the solution.`
109
+
110
+ #### Who are the annotators?
111
+
112
+ [More Information Needed]
113
+
114
+ ### Personal and Sensitive Information
115
+
116
+ [More Information Needed]
117
+
118
+ ## Considerations for Using the Data
119
+
120
+ ### Social Impact of Dataset
121
+
122
+ [More Information Needed]
123
+
124
+ ### Discussion of Biases
125
+
126
+ [More Information Needed]
127
+
128
+ ### Other Known Limitations
129
+
130
+ [More Information Needed]
131
+
132
+ ## Additional Information
133
+
134
+ ### Dataset Curators
135
+
136
+ Originally prepared by snips.ai. The Snips team has since joined Sonos in November 2019. These open datasets remain available and their
137
+ access is now managed by the Sonos Voice Experience Team. Please email sve-research@sonos.com with any question.
138
+
139
+ ### Licensing Information
140
+
141
+ The source data is licensed under Creative Commons Zero v1.0 Universal.
142
+
143
+ ### Citation Information
144
+
145
+ Any publication based on these datasets must include a full citation to the following paper in which the results were published by the Snips Team:
146
+
147
+ Coucke A. et al., "Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces." CoRR 2018,
148
+ https://arxiv.org/abs/1805.10190
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "Snips' built in intents dataset was initially used to compare different voice assistants and released as a public dataset hosted at\nhttps://github.com/sonos/nlu-benchmark 2016-12-built-in-intents. The dataset contains 328 utterances over 10 intent classes. The\nrelated paper mentioned on the github page is https://arxiv.org/abs/1805.10190 and a related Medium post is\nhttps://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-d35be6ce568d .\n", "citation": "@article{DBLP:journals/corr/abs-1805-10190,\n author = {Alice Coucke and\n Alaa Saade and\n Adrien Ball and\n Th{'{e}}odore Bluche and\n Alexandre Caulier and\n David Leroy and\n Cl{'{e}}ment Doumouro and\n Thibault Gisselbrecht and\n Francesco Caltagirone and\n Thibaut Lavril and\n Ma{\"{e}}l Primet and\n Joseph Dureau},\n title = {Snips Voice Platform: an embedded Spoken Language Understanding system\n for private-by-design voice interfaces},\n journal = {CoRR},\n volume = {abs/1805.10190},\n year = {2018},\n url = {http://arxiv.org/abs/1805.10190},\n archivePrefix = {arXiv},\n eprint = {1805.10190},\n timestamp = {Mon, 13 Aug 2018 16:46:59 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-1805-10190.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 10, "names": ["ComparePlaces", "RequestRide", "GetWeather", "SearchPlace", "GetPlaceDetails", "ShareCurrentLocation", "GetTrafficInformation", "BookRestaurant", "GetDirections", "ShareETA"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "snips_built_in_intents", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 19431, "num_examples": 328, "dataset_name": "snips_built_in_intents"}}, "download_checksums": {"https://raw.githubusercontent.com/sonos/nlu-benchmark/master/2016-12-built-in-intents/benchmark_data.json": {"num_bytes": 9130264, "checksum": "e3f6ba7b7ab0e8d1a5959a8c8ecb4fc566a281f4ebd34fdf1160929c630d299f"}}, "download_size": 9130264, "post_processing_size": null, "dataset_size": 19431, "size_in_bytes": 9149695}}
dummy/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e0e1fc5f5396f649d77fa2a866b14ffd86bbaf70f7060150e0c8410a35d1200
3
+ size 3038
snips_built_in_intents.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Snips built in intents (2016-12-built-in-intents) dataset."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import json
22
+
23
+ import datasets
24
+
25
+
26
+ _DESCRIPTION = """\
27
+ Snips' built in intents dataset was initially used to compare different voice assistants and released as a public dataset hosted at
28
+ https://github.com/sonos/nlu-benchmark 2016-12-built-in-intents. The dataset contains 328 utterances over 10 intent classes. The
29
+ related paper mentioned on the github page is https://arxiv.org/abs/1805.10190 and a related Medium post is
30
+ https://medium.com/snips-ai/benchmarking-natural-language-understanding-systems-d35be6ce568d .
31
+ """
32
+
33
+ _CITATION = """\
34
+ @article{DBLP:journals/corr/abs-1805-10190,
35
+ author = {Alice Coucke and
36
+ Alaa Saade and
37
+ Adrien Ball and
38
+ Th{\'{e}}odore Bluche and
39
+ Alexandre Caulier and
40
+ David Leroy and
41
+ Cl{\'{e}}ment Doumouro and
42
+ Thibault Gisselbrecht and
43
+ Francesco Caltagirone and
44
+ Thibaut Lavril and
45
+ Ma{\"{e}}l Primet and
46
+ Joseph Dureau},
47
+ title = {Snips Voice Platform: an embedded Spoken Language Understanding system
48
+ for private-by-design voice interfaces},
49
+ journal = {CoRR},
50
+ volume = {abs/1805.10190},
51
+ year = {2018},
52
+ url = {http://arxiv.org/abs/1805.10190},
53
+ archivePrefix = {arXiv},
54
+ eprint = {1805.10190},
55
+ timestamp = {Mon, 13 Aug 2018 16:46:59 +0200},
56
+ biburl = {https://dblp.org/rec/journals/corr/abs-1805-10190.bib},
57
+ bibsource = {dblp computer science bibliography, https://dblp.org}
58
+ }
59
+ """
60
+
61
+ _DOWNLOAD_URL = (
62
+ "https://raw.githubusercontent.com/sonos/nlu-benchmark/master/2016-12-built-in-intents/benchmark_data.json"
63
+ )
64
+
65
+
66
+ class SnipsBuiltInIntents(datasets.GeneratorBasedBuilder):
67
+ """Snips built in intents (2016-12-built-in-intents) dataset."""
68
+
69
+ def _info(self):
70
+ # ToDo: Consider adding an alternate configuration for the entity slots. The default is to only return the intent labels.
71
+
72
+ return datasets.DatasetInfo(
73
+ description=_DESCRIPTION,
74
+ features=datasets.Features(
75
+ {
76
+ "text": datasets.Value("string"),
77
+ "label": datasets.features.ClassLabel(
78
+ names=[
79
+ "ComparePlaces",
80
+ "RequestRide",
81
+ "GetWeather",
82
+ "SearchPlace",
83
+ "GetPlaceDetails",
84
+ "ShareCurrentLocation",
85
+ "GetTrafficInformation",
86
+ "BookRestaurant",
87
+ "GetDirections",
88
+ "ShareETA",
89
+ ]
90
+ ),
91
+ }
92
+ ),
93
+ homepage="https://github.com/sonos/nlu-benchmark/tree/master/2016-12-built-in-intents",
94
+ citation=_CITATION,
95
+ )
96
+
97
+ def _split_generators(self, dl_manager):
98
+ # Note: The source dataset doesn't have a train-test split.
99
+ # ToDo: Consider splitting the data into train-test sets and re-hosting.
100
+ samples_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
101
+ return [
102
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": samples_path}),
103
+ ]
104
+
105
+ def _generate_examples(self, filepath):
106
+ """Snips built in intent examples."""
107
+ num_examples = 0
108
+
109
+ with open(filepath, encoding="utf-8") as file_obj:
110
+ snips_dict = json.load(file_obj)
111
+ domains = snips_dict["domains"]
112
+
113
+ for domain_dict in domains:
114
+ intents = domain_dict["intents"]
115
+
116
+ for intent_dict in intents:
117
+ label = intent_dict["benchmark"]["Snips"]["original_intent_name"]
118
+ queries = intent_dict["queries"]
119
+
120
+ for query_dict in queries:
121
+ query_text = query_dict["text"]
122
+
123
+ yield num_examples, {"text": query_text, "label": label}
124
+ num_examples += 1 # Explicitly keep track of the number of examples.