Upload train_multi_subject_dreambooth_inpainting_custom.py
Browse files
train_multi_subject_dreambooth_inpainting_custom.py
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
from accelerate import Accelerator
|
15 |
+
from accelerate.logging import get_logger
|
16 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
17 |
+
from datasets import concatenate_datasets, load_dataset
|
18 |
+
from PIL import Image
|
19 |
+
from torch.utils.data import Dataset
|
20 |
+
from torchvision import transforms
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
23 |
+
|
24 |
+
from diffusers import (
|
25 |
+
AutoencoderKL,
|
26 |
+
DDPMScheduler,
|
27 |
+
StableDiffusionInpaintPipeline,
|
28 |
+
UNet2DConditionModel,
|
29 |
+
)
|
30 |
+
from diffusers.optimization import get_scheduler
|
31 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
32 |
+
|
33 |
+
|
34 |
+
if is_wandb_available():
|
35 |
+
import wandb
|
36 |
+
|
37 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
38 |
+
check_min_version("0.13.0.dev0")
|
39 |
+
|
40 |
+
logger = get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
def parse_args():
|
44 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
45 |
+
parser.add_argument(
|
46 |
+
"--pretrained_model_name_or_path",
|
47 |
+
type=str,
|
48 |
+
default=None,
|
49 |
+
required=True,
|
50 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
51 |
+
)
|
52 |
+
parser.add_argument("--instance_data_dir", nargs="+", help="Instance data directories")
|
53 |
+
parser.add_argument(
|
54 |
+
"--output_dir",
|
55 |
+
type=str,
|
56 |
+
default="text-inversion-model",
|
57 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
58 |
+
)
|
59 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
60 |
+
parser.add_argument(
|
61 |
+
"--resolution",
|
62 |
+
type=int,
|
63 |
+
default=512,
|
64 |
+
help=(
|
65 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
66 |
+
" resolution"
|
67 |
+
),
|
68 |
+
)
|
69 |
+
parser.add_argument(
|
70 |
+
"--train_text_encoder", default=False, action="store_true", help="Whether to train the text encoder"
|
71 |
+
)
|
72 |
+
parser.add_argument(
|
73 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
74 |
+
)
|
75 |
+
parser.add_argument(
|
76 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
77 |
+
)
|
78 |
+
parser.add_argument(
|
79 |
+
"--max_train_steps",
|
80 |
+
type=int,
|
81 |
+
default=None,
|
82 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
83 |
+
)
|
84 |
+
parser.add_argument(
|
85 |
+
"--gradient_accumulation_steps",
|
86 |
+
type=int,
|
87 |
+
default=1,
|
88 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
89 |
+
)
|
90 |
+
parser.add_argument(
|
91 |
+
"--learning_rate",
|
92 |
+
type=float,
|
93 |
+
default=5e-6,
|
94 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
95 |
+
)
|
96 |
+
parser.add_argument(
|
97 |
+
"--scale_lr",
|
98 |
+
action="store_true",
|
99 |
+
default=False,
|
100 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
101 |
+
)
|
102 |
+
parser.add_argument(
|
103 |
+
"--lr_scheduler",
|
104 |
+
type=str,
|
105 |
+
default="constant",
|
106 |
+
help=(
|
107 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
108 |
+
' "constant", "constant_with_warmup"]'
|
109 |
+
),
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
113 |
+
)
|
114 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
115 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
116 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
117 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
118 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
119 |
+
parser.add_argument(
|
120 |
+
"--logging_dir",
|
121 |
+
type=str,
|
122 |
+
default="logs",
|
123 |
+
help=(
|
124 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
125 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
126 |
+
),
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"--mixed_precision",
|
130 |
+
type=str,
|
131 |
+
default="no",
|
132 |
+
choices=["no", "fp16", "bf16"],
|
133 |
+
help=(
|
134 |
+
"Whether to use mixed precision. Choose"
|
135 |
+
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
136 |
+
"and an Nvidia Ampere GPU."
|
137 |
+
),
|
138 |
+
)
|
139 |
+
parser.add_argument(
|
140 |
+
"--checkpointing_steps",
|
141 |
+
type=int,
|
142 |
+
default=1000,
|
143 |
+
help=(
|
144 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
145 |
+
" checkpoints in case they are better than the last checkpoint and are suitable for resuming training"
|
146 |
+
" using `--resume_from_checkpoint`."
|
147 |
+
),
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--checkpointing_from",
|
151 |
+
type=int,
|
152 |
+
default=1000,
|
153 |
+
help=("Start to checkpoint from step"),
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--validation_steps",
|
157 |
+
type=int,
|
158 |
+
default=50,
|
159 |
+
help=(
|
160 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
161 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
162 |
+
" and logging the images."
|
163 |
+
),
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--validation_from",
|
167 |
+
type=int,
|
168 |
+
default=0,
|
169 |
+
help=("Start to validate from step"),
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--checkpoints_total_limit",
|
173 |
+
type=int,
|
174 |
+
default=None,
|
175 |
+
help=(
|
176 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
177 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
178 |
+
" for more docs"
|
179 |
+
),
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--resume_from_checkpoint",
|
183 |
+
type=str,
|
184 |
+
default=None,
|
185 |
+
help=(
|
186 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
187 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
188 |
+
),
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--validation_project_name",
|
192 |
+
type=str,
|
193 |
+
default=None,
|
194 |
+
help="The w&b name.",
|
195 |
+
)
|
196 |
+
parser.add_argument(
|
197 |
+
"--report_to_wandb", default=False, action="store_true", help="Whether to report to weights and biases"
|
198 |
+
)
|
199 |
+
|
200 |
+
args = parser.parse_args()
|
201 |
+
|
202 |
+
return args
|
203 |
+
|
204 |
+
|
205 |
+
def prepare_mask_and_masked_image(image, mask):
|
206 |
+
image = np.array(image.convert("RGB"))
|
207 |
+
image = image[None].transpose(0, 3, 1, 2)
|
208 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
209 |
+
|
210 |
+
mask = np.array(mask.convert("L"))
|
211 |
+
mask = mask.astype(np.float32) / 255.0
|
212 |
+
mask = mask[None, None]
|
213 |
+
mask[mask < 0.5] = 0
|
214 |
+
mask[mask >= 0.5] = 1
|
215 |
+
mask = torch.from_numpy(mask)
|
216 |
+
|
217 |
+
masked_image = image * (mask < 0.5)
|
218 |
+
|
219 |
+
return mask, masked_image
|
220 |
+
|
221 |
+
|
222 |
+
class DreamBoothDataset(Dataset):
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
tokenizer,
|
226 |
+
datasets_paths,
|
227 |
+
):
|
228 |
+
self.tokenizer = tokenizer
|
229 |
+
self.datasets_paths = (datasets_paths,)
|
230 |
+
self.datasets = [load_dataset(dataset_path) for dataset_path in self.datasets_paths[0]]
|
231 |
+
self.train_data = concatenate_datasets([dataset["train"] for dataset in self.datasets])
|
232 |
+
self.test_data = concatenate_datasets([dataset["test"] for dataset in self.datasets])
|
233 |
+
|
234 |
+
self.image_normalize = transforms.Compose(
|
235 |
+
[
|
236 |
+
transforms.ToTensor(),
|
237 |
+
transforms.Normalize([0.5], [0.5]),
|
238 |
+
]
|
239 |
+
)
|
240 |
+
|
241 |
+
def set_image(self, img, switch):
|
242 |
+
if img.mode not in ["RGB", "L"]:
|
243 |
+
img = img.convert("RGB")
|
244 |
+
|
245 |
+
if switch:
|
246 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
247 |
+
|
248 |
+
img = img.resize((512, 512), Image.BILINEAR)
|
249 |
+
|
250 |
+
return img
|
251 |
+
|
252 |
+
def __len__(self):
|
253 |
+
return len(self.train_data)
|
254 |
+
|
255 |
+
def __getitem__(self, index):
|
256 |
+
# Lettings
|
257 |
+
example = {}
|
258 |
+
img_idx = index % len(self.train_data)
|
259 |
+
switch = random.choice([True, False])
|
260 |
+
|
261 |
+
# Load image
|
262 |
+
image = self.set_image(self.train_data[img_idx]["image"], switch)
|
263 |
+
|
264 |
+
# Normalize image
|
265 |
+
image_norm = self.image_normalize(image)
|
266 |
+
|
267 |
+
# Tokenise prompt
|
268 |
+
tokenized_prompt = self.tokenizer(
|
269 |
+
self.train_data[img_idx]["prompt"],
|
270 |
+
padding="do_not_pad",
|
271 |
+
truncation=True,
|
272 |
+
max_length=self.tokenizer.model_max_length,
|
273 |
+
).input_ids
|
274 |
+
|
275 |
+
# Load masks for image
|
276 |
+
masks = [
|
277 |
+
self.set_image(self.train_data[img_idx][key], switch) for key in self.train_data[img_idx] if "mask" in key
|
278 |
+
]
|
279 |
+
|
280 |
+
# Build example
|
281 |
+
example["PIL_image"] = image
|
282 |
+
example["instance_image"] = image_norm
|
283 |
+
example["instance_prompt_id"] = tokenized_prompt
|
284 |
+
example["instance_masks"] = masks
|
285 |
+
|
286 |
+
return example
|
287 |
+
|
288 |
+
|
289 |
+
def weighted_mask(masks):
|
290 |
+
# Convert each mask to a NumPy array and ensure it's binary
|
291 |
+
mask_arrays = [np.array(mask) / 255 for mask in masks] # Normalizing to 0-1 range
|
292 |
+
|
293 |
+
# Generate random weights and apply them to each mask
|
294 |
+
weights = [random.random() for _ in masks]
|
295 |
+
weights = [weight / sum(weights) for weight in weights]
|
296 |
+
weighted_masks = [mask * weight for mask, weight in zip(mask_arrays, weights)]
|
297 |
+
|
298 |
+
# Sum the weighted masks
|
299 |
+
summed_mask = np.sum(weighted_masks, axis=0)
|
300 |
+
|
301 |
+
# Apply a threshold to create the final mask
|
302 |
+
threshold = 0.5 # This threshold can be adjusted
|
303 |
+
result_mask = summed_mask >= threshold
|
304 |
+
|
305 |
+
# Convert the result back to a PIL image
|
306 |
+
return Image.fromarray(result_mask.astype(np.uint8) * 255)
|
307 |
+
|
308 |
+
|
309 |
+
def collate_fn(examples, tokenizer):
|
310 |
+
input_ids = [example["instance_prompt_id"] for example in examples]
|
311 |
+
pixel_values = [example["instance_image"] for example in examples]
|
312 |
+
|
313 |
+
masks, masked_images = [], []
|
314 |
+
|
315 |
+
for example in examples:
|
316 |
+
# generate a random mask
|
317 |
+
mask = weighted_mask(example["instance_masks"])
|
318 |
+
|
319 |
+
# prepare mask and masked image
|
320 |
+
mask, masked_image = prepare_mask_and_masked_image(example["PIL_image"], mask)
|
321 |
+
|
322 |
+
masks.append(mask)
|
323 |
+
masked_images.append(masked_image)
|
324 |
+
|
325 |
+
pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float()
|
326 |
+
masks = torch.stack(masks)
|
327 |
+
masked_images = torch.stack(masked_images)
|
328 |
+
input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids
|
329 |
+
|
330 |
+
batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images}
|
331 |
+
|
332 |
+
return batch
|
333 |
+
|
334 |
+
|
335 |
+
def log_validation(pipeline, text_encoder, unet, val_pairs, accelerator):
|
336 |
+
# update pipeline (note: unet and vae are loaded again in float32)
|
337 |
+
pipeline.text_encoder = accelerator.unwrap_model(text_encoder)
|
338 |
+
pipeline.unet = accelerator.unwrap_model(unet)
|
339 |
+
|
340 |
+
with torch.autocast("cuda"):
|
341 |
+
val_results = [{"data_or_path": pipeline(**pair).images[0], "caption": pair["prompt"]} for pair in val_pairs]
|
342 |
+
|
343 |
+
torch.cuda.empty_cache()
|
344 |
+
|
345 |
+
wandb.log({"validation": [wandb.Image(**val_result) for val_result in val_results]})
|
346 |
+
|
347 |
+
|
348 |
+
def checkpoint(args, global_step, accelerator):
|
349 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
350 |
+
accelerator.save_state(save_path)
|
351 |
+
logger.info(f"Saved state to {save_path}")
|
352 |
+
|
353 |
+
|
354 |
+
def main():
|
355 |
+
args = parse_args()
|
356 |
+
|
357 |
+
project_config = ProjectConfiguration(
|
358 |
+
total_limit=args.checkpoints_total_limit,
|
359 |
+
project_dir=args.output_dir,
|
360 |
+
logging_dir=Path(args.output_dir, args.logging_dir),
|
361 |
+
)
|
362 |
+
|
363 |
+
accelerator = Accelerator(
|
364 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
365 |
+
mixed_precision=args.mixed_precision,
|
366 |
+
project_config=project_config,
|
367 |
+
log_with="wandb" if args.report_to_wandb else None,
|
368 |
+
)
|
369 |
+
|
370 |
+
if args.report_to_wandb and not is_wandb_available():
|
371 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
372 |
+
|
373 |
+
if args.seed is not None:
|
374 |
+
set_seed(args.seed)
|
375 |
+
|
376 |
+
# Make one log on every process with the configuration for debugging.
|
377 |
+
logging.basicConfig(
|
378 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
379 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
380 |
+
level=logging.INFO,
|
381 |
+
)
|
382 |
+
logger.info(accelerator.state, main_process_only=False)
|
383 |
+
|
384 |
+
# Load the tokenizer & models and create wrapper for stable diffusion
|
385 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
|
386 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
387 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder"
|
388 |
+
).requires_grad_(args.train_text_encoder)
|
389 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae").requires_grad_(False)
|
390 |
+
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
|
391 |
+
|
392 |
+
if args.scale_lr:
|
393 |
+
args.learning_rate = (
|
394 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
395 |
+
)
|
396 |
+
|
397 |
+
optimizer = torch.optim.AdamW(
|
398 |
+
params=itertools.chain(unet.parameters(), text_encoder.parameters())
|
399 |
+
if args.train_text_encoder
|
400 |
+
else unet.parameters(),
|
401 |
+
lr=args.learning_rate,
|
402 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
403 |
+
weight_decay=args.adam_weight_decay,
|
404 |
+
eps=args.adam_epsilon,
|
405 |
+
)
|
406 |
+
|
407 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
408 |
+
|
409 |
+
train_dataset = DreamBoothDataset(
|
410 |
+
tokenizer=tokenizer,
|
411 |
+
datasets_paths=args.instance_data_dir,
|
412 |
+
)
|
413 |
+
|
414 |
+
train_dataloader = torch.utils.data.DataLoader(
|
415 |
+
train_dataset,
|
416 |
+
batch_size=args.train_batch_size,
|
417 |
+
shuffle=True,
|
418 |
+
collate_fn=lambda examples: collate_fn(examples, tokenizer),
|
419 |
+
)
|
420 |
+
|
421 |
+
# Scheduler and math around the number of training steps.
|
422 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
423 |
+
|
424 |
+
lr_scheduler = get_scheduler(
|
425 |
+
args.lr_scheduler,
|
426 |
+
optimizer=optimizer,
|
427 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
428 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
429 |
+
)
|
430 |
+
|
431 |
+
if args.train_text_encoder:
|
432 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
433 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
437 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
438 |
+
)
|
439 |
+
|
440 |
+
accelerator.register_for_checkpointing(lr_scheduler)
|
441 |
+
|
442 |
+
if args.mixed_precision == "fp16":
|
443 |
+
weight_dtype = torch.float16
|
444 |
+
elif args.mixed_precision == "bf16":
|
445 |
+
weight_dtype = torch.bfloat16
|
446 |
+
else:
|
447 |
+
weight_dtype = torch.float32
|
448 |
+
|
449 |
+
# Move text_encode and vae to gpu.
|
450 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
451 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
452 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
453 |
+
if not args.train_text_encoder:
|
454 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
455 |
+
|
456 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
457 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
458 |
+
|
459 |
+
# Afterwards we calculate our number of training epochs
|
460 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
461 |
+
|
462 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
463 |
+
# The trackers initializes automatically on the main process.
|
464 |
+
if accelerator.is_main_process:
|
465 |
+
tracker_config = vars(copy.deepcopy(args))
|
466 |
+
accelerator.init_trackers(args.validation_project_name, config=tracker_config)
|
467 |
+
|
468 |
+
# create validation pipeline (note: unet and vae are loaded again in float32)
|
469 |
+
val_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
470 |
+
args.pretrained_model_name_or_path,
|
471 |
+
tokenizer=tokenizer,
|
472 |
+
text_encoder=text_encoder,
|
473 |
+
unet=unet,
|
474 |
+
vae=vae,
|
475 |
+
torch_dtype=weight_dtype,
|
476 |
+
safety_checker=None,
|
477 |
+
)
|
478 |
+
val_pipeline.set_progress_bar_config(disable=True)
|
479 |
+
|
480 |
+
# prepare validation dataset
|
481 |
+
val_pairs = [
|
482 |
+
{
|
483 |
+
"image": example["image"],
|
484 |
+
"mask_image": mask,
|
485 |
+
"prompt": example["prompt"],
|
486 |
+
}
|
487 |
+
for example in train_dataset.test_data
|
488 |
+
for mask in [example[key] for key in example if "mask" in key]
|
489 |
+
]
|
490 |
+
|
491 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
492 |
+
def save_model_hook(models, weights, output_dir):
|
493 |
+
if accelerator.is_main_process:
|
494 |
+
for model in models:
|
495 |
+
sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
|
496 |
+
model.save_pretrained(os.path.join(output_dir, sub_dir))
|
497 |
+
|
498 |
+
# make sure to pop weight so that corresponding model is not saved again
|
499 |
+
weights.pop()
|
500 |
+
|
501 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
502 |
+
|
503 |
+
print()
|
504 |
+
|
505 |
+
# Train!
|
506 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
507 |
+
|
508 |
+
logger.info("***** Running training *****")
|
509 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
510 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
511 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
512 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
513 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
514 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
515 |
+
|
516 |
+
global_step = 0
|
517 |
+
first_epoch = 0
|
518 |
+
|
519 |
+
if args.resume_from_checkpoint:
|
520 |
+
if args.resume_from_checkpoint != "latest":
|
521 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
522 |
+
else:
|
523 |
+
# Get the most recent checkpoint
|
524 |
+
dirs = os.listdir(args.output_dir)
|
525 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
526 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
527 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
528 |
+
|
529 |
+
if path is None:
|
530 |
+
accelerator.print(
|
531 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
532 |
+
)
|
533 |
+
args.resume_from_checkpoint = None
|
534 |
+
else:
|
535 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
536 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
537 |
+
global_step = int(path.split("-")[1])
|
538 |
+
|
539 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
540 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
541 |
+
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
542 |
+
|
543 |
+
# Only show the progress bar once on each machine.
|
544 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
545 |
+
progress_bar.set_description("Steps")
|
546 |
+
|
547 |
+
for epoch in range(first_epoch, num_train_epochs):
|
548 |
+
unet.train()
|
549 |
+
for step, batch in enumerate(train_dataloader):
|
550 |
+
# Skip steps until we reach the resumed step
|
551 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
552 |
+
if step % args.gradient_accumulation_steps == 0:
|
553 |
+
progress_bar.update(1)
|
554 |
+
continue
|
555 |
+
|
556 |
+
with accelerator.accumulate(unet):
|
557 |
+
# Convert images to latent space
|
558 |
+
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
559 |
+
latents = latents * vae.config.scaling_factor
|
560 |
+
|
561 |
+
# Convert masked images to latent space
|
562 |
+
masked_latents = vae.encode(
|
563 |
+
batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype)
|
564 |
+
).latent_dist.sample()
|
565 |
+
masked_latents = masked_latents * vae.config.scaling_factor
|
566 |
+
|
567 |
+
masks = batch["masks"]
|
568 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
569 |
+
mask = torch.stack(
|
570 |
+
[
|
571 |
+
torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8))
|
572 |
+
for mask in masks
|
573 |
+
]
|
574 |
+
)
|
575 |
+
mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8)
|
576 |
+
|
577 |
+
# Sample noise that we'll add to the latents
|
578 |
+
noise = torch.randn_like(latents)
|
579 |
+
bsz = latents.shape[0]
|
580 |
+
# Sample a random timestep for each image
|
581 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
582 |
+
timesteps = timesteps.long()
|
583 |
+
|
584 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
585 |
+
# (this is the forward diffusion process)
|
586 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
587 |
+
|
588 |
+
# concatenate the noised latents with the mask and the masked latents
|
589 |
+
latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1)
|
590 |
+
|
591 |
+
# Get the text embedding for conditioning
|
592 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
593 |
+
|
594 |
+
# Predict the noise residual
|
595 |
+
noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample
|
596 |
+
|
597 |
+
# Get the target for loss depending on the prediction type
|
598 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
599 |
+
target = noise
|
600 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
601 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
602 |
+
else:
|
603 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
604 |
+
|
605 |
+
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
606 |
+
|
607 |
+
accelerator.backward(loss)
|
608 |
+
if accelerator.sync_gradients:
|
609 |
+
params_to_clip = (
|
610 |
+
itertools.chain(unet.parameters(), text_encoder.parameters())
|
611 |
+
if args.train_text_encoder
|
612 |
+
else unet.parameters()
|
613 |
+
)
|
614 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
615 |
+
|
616 |
+
optimizer.step()
|
617 |
+
lr_scheduler.step()
|
618 |
+
optimizer.zero_grad()
|
619 |
+
|
620 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
621 |
+
if accelerator.sync_gradients:
|
622 |
+
progress_bar.update(1)
|
623 |
+
global_step += 1
|
624 |
+
|
625 |
+
if accelerator.is_main_process:
|
626 |
+
if (
|
627 |
+
global_step % args.validation_steps == 0
|
628 |
+
and global_step >= args.validation_from
|
629 |
+
and args.report_to_wandb
|
630 |
+
):
|
631 |
+
log_validation(
|
632 |
+
val_pipeline,
|
633 |
+
text_encoder,
|
634 |
+
unet,
|
635 |
+
val_pairs,
|
636 |
+
accelerator,
|
637 |
+
)
|
638 |
+
|
639 |
+
if global_step % args.checkpointing_steps == 0:
|
640 |
+
checkpoint(
|
641 |
+
args,
|
642 |
+
global_step,
|
643 |
+
accelerator,
|
644 |
+
)
|
645 |
+
|
646 |
+
# Step logging
|
647 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
648 |
+
progress_bar.set_postfix(**logs)
|
649 |
+
accelerator.log(logs, step=global_step)
|
650 |
+
|
651 |
+
if global_step >= args.max_train_steps:
|
652 |
+
break
|
653 |
+
|
654 |
+
accelerator.wait_for_everyone()
|
655 |
+
|
656 |
+
# Create the pipeline using using the trained modules and save it.
|
657 |
+
if accelerator.is_main_process:
|
658 |
+
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
659 |
+
args.pretrained_model_name_or_path,
|
660 |
+
unet=accelerator.unwrap_model(unet),
|
661 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
662 |
+
)
|
663 |
+
pipeline.save_pretrained(args.output_dir)
|
664 |
+
|
665 |
+
# Terminate training
|
666 |
+
accelerator.end_training()
|
667 |
+
|
668 |
+
|
669 |
+
if __name__ == "__main__":
|
670 |
+
main()
|