|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Improving Product Search dataset .""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
@misc{reddy2022shopping, |
|
title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search}, |
|
author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay |
|
and Arnab Biswas and Anlu Xing and Karthik Subbian}, |
|
year={2022}, |
|
eprint={2206.06588}, |
|
archivePrefix={arXiv} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for Improve Product Search Dataset" |
|
|
|
_DATASET_URLS = { |
|
'train': |
|
"https://huggingface.co/datasets/spacemanidol/ESCI-product-dataset-corpus-jp/resolve/main/collection.jsonl.gz" |
|
} |
|
|
|
|
|
class ProductSearchCorpus(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(version=VERSION, |
|
description="Product Search Dataset 100-word splits"), |
|
] |
|
def _info(self): |
|
features = datasets.Features( |
|
{'docid': datasets.Value('string'), 'text': datasets.Value('string'), |
|
'title': datasets.Value('string'), 'bullet_points': datasets.Value('string'), |
|
'brand': datasets.Value('string'), 'color': datasets.Value('string'), |
|
'locale': datasets.Value('string'), 'contents': datasets.Value('string') |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
if data.get('locale') is None: |
|
data['locale'] = "jp" |
|
if data.get('title') is None: |
|
data['title'] = '' |
|
if data.get('text') is None: |
|
data['text'] = '' |
|
if data.get('brand') is None: |
|
data['brand'] = '' |
|
if data.get('color') is None: |
|
data['color'] = '' |
|
if data.get('contents') is None: |
|
data['contents'] = '' |
|
if data.get('bullet_points') is None: |
|
data['bullet_points'] = '' |
|
yield data['docid'], data |
|
|