# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets from collections import defaultdict from dataclasses import dataclass _CITATION = ''' ''' surprise_languages = ['de', 'yo'] new_languages = ['es', 'fa', 'fr', 'hi', 'zh'] + surprise_languages languages = ['ar', 'bn', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th', 'zh'] + surprise_languages _DESCRIPTION = 'dataset load script for MIRACL' _DATASET_URLS = { lang: { 'dev': [ f'https://huggingface.co/datasets/spear-model/cl-miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv', f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv', ], # 'testB': [ # f'https://huggingface.co/datasets/spear-model/cl-miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-test-b.tsv', # ], } for lang in languages } # for lang in languages: # if lang in surprise_languages: # continue # _DATASET_URLS[lang]['train'] = [ # f'https://huggingface.co/datasets/spear-model/cl-miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-train.tsv', # f'https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-train.tsv', # ] # for lang in languages: # if lang in new_languages: # continue # _DATASET_URLS[lang]['testA'] = [ # f'https://huggingface.co/datasets/spear-model/cl-miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-test-a.tsv', # ] def load_topic(fn): qid2topic = {} with open(fn, encoding="utf-8") as f: for line in f: # the first two columns are the orignal id and topics # the third column is the new id (english#ori_id) # the fourth column is the topic translated to english _, _, qid, topic = line.strip().split('\t') qid2topic[qid] = topic return qid2topic def load_qrels(fn): if fn is None: return None qrels = defaultdict(dict) with open(fn, encoding="utf-8") as f: for line in f: qid, _, docid, rel = line.strip().split('\t') qid = f"english#{qid}" qrels[qid][docid] = int(rel) return qrels class CL_MIRACL(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=lang, description=f'MIRACL dataset in language {lang}.' ) for lang in languages ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'positive_passages': [{ 'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string') }], 'negative_passages': [{ 'docid': datasets.Value('string'), 'text': datasets.Value('string'), 'title': datasets.Value('string'), }], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage='https://project-miracl.github.io', # License for the dataset if available license='', # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): lang = self.config.name downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) splits = [ datasets.SplitGenerator( name='dev', gen_kwargs={ 'filepaths': downloaded_files['dev'], }, ), # datasets.SplitGenerator( # name='testB', # gen_kwargs={ # 'filepaths': downloaded_files['testB'], # }, # ), ] # if lang not in surprise_languages: # splits.append(datasets.SplitGenerator( # name='train', # gen_kwargs={ # 'filepaths': downloaded_files['train'], # }, # )) # if lang not in new_languages: # splits.append(datasets.SplitGenerator( # name='testA', # gen_kwargs={ # 'filepaths': downloaded_files['testA'], # }, # )) return splits def _generate_examples(self, filepaths): lang = self.config.name miracl_corpus = datasets.load_dataset('miracl/miracl-corpus', lang)['train'] docid2doc = {doc['docid']: (doc['title'], doc['text']) for doc in miracl_corpus} topic_fn, qrel_fn = (filepaths) if len(filepaths) == 2 else (filepaths[0], None) qid2topic = load_topic(topic_fn) qrels = load_qrels(qrel_fn) for qid in qid2topic: data = {} data['query_id'] = qid data['query'] = qid2topic[qid] pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else [] neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else [] data['positive_passages'] = [{ 'docid': docid, **dict(zip(['title', 'text'], docid2doc[docid])) } for docid in pos_docids if docid in docid2doc] data['negative_passages'] = [{ 'docid': docid, **dict(zip(['title', 'text'], docid2doc[docid])) } for docid in neg_docids if docid in docid2doc] yield qid, data