File size: 5,471 Bytes
1ef6919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c78104
 
 
1ef6919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c78104
1ef6919
 
 
 
 
4507231
1ef6919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""BioCreative II gene mention recognition Corpus"""

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@article{smith2008overview,
        title={Overview of BioCreative II gene mention recognition},
        author={Smith, Larry and Tanabe, Lorraine K and nee Ando, Rie Johnson and Kuo, Cheng-Ju and Chung, I-Fang and Hsu, Chun-Nan and Lin, Yu-Shi and Klinger, Roman and Friedrich, Christoph M and Ganchev, Kuzman and others},
        journal={Genome biology},
        volume={9},
        number={S2},
        pages={S2},
        year={2008},
        publisher={Springer}
}
"""

_DESCRIPTION = """\
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop.
In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions.
A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721.
Here we present brief descriptions of all the methods used and a statistical analysis of the results.
We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible,
and furthermore that the best result makes use of the lowest scoring submissions.

For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/

The original dataset can be downloaded from: https://biocreative.bioinformatics.udel.edu/resources/corpora/biocreative-ii-corpus/
This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll
"""

_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/"
_URL = "https://github.com/spyysalo/bc2gm-corpus/raw/master/conll/"
_TRAINING_FILE = "train.tsv"
_DEV_FILE = "devel.tsv"
_TEST_FILE = "test.tsv"


class Bc2gmCorpusConfig(datasets.BuilderConfig):
    """BuilderConfig for Bc2gmCorpus"""

    def __init__(self, **kwargs):
        """BuilderConfig for Bc2gmCorpus.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(Bc2gmCorpusConfig, self).__init__(**kwargs)


class Bc2gmCorpus(datasets.GeneratorBasedBuilder):
    """Bc2gmCorpus dataset."""

    BUILDER_CONFIGS = [
        Bc2gmCorpusConfig(name="bc2gm_corpus", version=datasets.Version("1.0.0"), description="bc2gm corpus"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-GENE",
                                "I-GENE",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # tokens are tab separated
                    splits = line.split("\t")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }