albertvillanova HF staff commited on
Commit
7ec89c5
·
1 Parent(s): c422155

Host data file (#4)

Browse files

- Host data file (ac17d9cd6ea48cc33821b712426771f488f15e51)
- Update loading script (cbbcbbc36fb15481c1fffe834f0dd9b8ca602cd1)
- Update metadata (72b11a4e51bc8c21dbb3599e021eda02ff2d3888)
- Delete legacy dataset_infos.json (e4970ed48d2a5ecce5b8a434afb325cc0b239ffa)

Files changed (4) hide show
  1. README.md +68 -7
  2. data/s800.zip +3 -0
  3. dataset_infos.json +0 -1
  4. species_800.py +7 -13
README.md CHANGED
@@ -76,13 +76,18 @@ dataset_info:
76
 
77
  - **Homepage:** [SPECIES](https://species.jensenlab.org/)
78
  - **Repository:**
79
- - **Paper:**
80
  - **Leaderboard:**
81
- - **Point of Contact:**
82
 
83
  ### Dataset Summary
84
 
85
- [More Information Needed]
 
 
 
 
 
86
 
87
  ### Supported Tasks and Leaderboards
88
 
@@ -90,13 +95,34 @@ dataset_info:
90
 
91
  ### Languages
92
 
93
- [More Information Needed]
94
 
95
  ## Dataset Structure
96
 
97
  ### Data Instances
98
 
99
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  ### Data Fields
102
 
@@ -160,11 +186,46 @@ dataset_info:
160
 
161
  ### Licensing Information
162
 
163
- [More Information Needed]
164
 
165
  ### Citation Information
166
 
167
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  ### Contributions
169
 
170
  Thanks to [@edugp](https://github.com/edugp) for adding this dataset.
 
76
 
77
  - **Homepage:** [SPECIES](https://species.jensenlab.org/)
78
  - **Repository:**
79
+ - **Paper:** https://doi.org/10.1371/journal.pone.0065390
80
  - **Leaderboard:**
81
+ - **Point of Contact:** [Lars Juhl Jensen](mailto:lars.juhl.jensen@cpr.ku.dk)
82
 
83
  ### Dataset Summary
84
 
85
+ S800 Corpus: a novel abstract-based manually annotated corpus. S800 comprises 800 PubMed abstracts in which organism mentions were identified and mapped to the corresponding NCBI Taxonomy identifiers.
86
+
87
+ To increase the corpus taxonomic mention diversity the S800 abstracts were collected by selecting 100 abstracts from the following 8 categories: bacteriology, botany, entomology, medicine, mycology, protistology, virology and zoology. S800 has been annotated with a focus at the species level; however, higher taxa mentions (such as genera, families and orders) have also been considered.
88
+
89
+
90
+ The Species-800 dataset was pre-processed and split based on the dataset of Pyysalo (https://github.com/spyysalo/s800).
91
 
92
  ### Supported Tasks and Leaderboards
93
 
 
95
 
96
  ### Languages
97
 
98
+ English (`en`).
99
 
100
  ## Dataset Structure
101
 
102
  ### Data Instances
103
 
104
+ ```
105
+ {'id': '0',
106
+ 'tokens': ['Methanoregula',
107
+ 'formicica',
108
+ 'sp',
109
+ '.',
110
+ 'nov',
111
+ '.',
112
+ ',',
113
+ 'a',
114
+ 'methane',
115
+ '-',
116
+ 'producing',
117
+ 'archaeon',
118
+ 'isolated',
119
+ 'from',
120
+ 'methanogenic',
121
+ 'sludge',
122
+ '.'],
123
+ 'ner_tags': [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}
124
+
125
+ ```
126
 
127
  ### Data Fields
128
 
 
186
 
187
  ### Licensing Information
188
 
189
+ The species-level S800 corpus is subject to Medline restrictions.
190
 
191
  ### Citation Information
192
 
193
+ Original data:
194
+ ```
195
+ @article{pafilis2013species,
196
+ title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
197
+ author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},
198
+ journal={PloS one},
199
+ volume={8},
200
+ number={6},
201
+ pages={e65390},
202
+ year={2013},
203
+ publisher={Public Library of Science}
204
+ }
205
+ ```
206
+
207
+ Source data of this dataset:
208
+ ```
209
+ @article{10.1093/bioinformatics/btz682,
210
+ author = {Lee, Jinhyuk and Yoon, Wonjin and Kim, Sungdong and Kim, Donghyeon and Kim, Sunkyu and So, Chan Ho and Kang, Jaewoo},
211
+ title = "{BioBERT: a pre-trained biomedical language representation model for biomedical text mining}",
212
+ journal = {Bioinformatics},
213
+ volume = {36},
214
+ number = {4},
215
+ pages = {1234-1240},
216
+ year = {2019},
217
+ month = {09},
218
+ issn = {1367-4803},
219
+ doi = {10.1093/bioinformatics/btz682},
220
+ url = {https://doi.org/10.1093/bioinformatics/btz682},
221
+ eprint = {https://academic.oup.com/bioinformatics/article-pdf/36/4/1234/48983216/bioinformatics\_36\_4\_1234.pdf},
222
+ }
223
+ ```
224
+ and
225
+ ```
226
+ https://github.com/spyysalo/s800
227
+ ```
228
+
229
  ### Contributions
230
 
231
  Thanks to [@edugp](https://github.com/edugp) for adding this dataset.
data/s800.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11df652eb71f016b5918d8230fcac60709610eed1829232d5c2703d68545adc3
3
+ size 463734
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"species_800": {"description": "We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition,\nwhich we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of\nmagnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard\ncorpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus\ncomprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of\norganism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database\nand developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists.\n", "citation": "@article{pafilis2013species,\n title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},\n author={Pafilis, Evangelos and Frankild, Sune P and Fanini, Lucia and Faulwetter, Sarah and Pavloudi, Christina and Vasileiadou, Aikaterini and Arvanitidis, Christos and Jensen, Lars Juhl},\n journal={PloS one},\n volume={8},\n number={6},\n pages={e65390},\n year={2013},\n publisher={Public Library of Science}\n}\n", "homepage": "https://species.jensenlab.org/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 3, "names": ["O", "B", "I"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "species800", "config_name": "species_800", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2579096, "num_examples": 5734, "dataset_name": "species800"}, "validation": {"name": "validation", "num_bytes": 385756, "num_examples": 831, "dataset_name": "species800"}, "test": {"name": "test", "num_bytes": 737760, "num_examples": 1631, "dataset_name": "species800"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/": {"num_bytes": 18204624, "checksum": "30522c752fd90e6da05f117a52da13174b246e4980e46840e6e1737dc67e1d27"}}, "download_size": 18204624, "post_processing_size": null, "dataset_size": 3702612, "size_in_bytes": 21907236}}
 
 
species_800.py CHANGED
@@ -21,9 +21,6 @@ import os
21
  import datasets
22
 
23
 
24
- logger = datasets.logging.get_logger(__name__)
25
-
26
-
27
  _CITATION = """\
28
  @article{pafilis2013species,
29
  title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
@@ -48,7 +45,8 @@ and developed a web resource, ORGANISMS, that makes the results accessible to th
48
  """
49
 
50
  _HOMEPAGE = "https://species.jensenlab.org/"
51
- _URL = "https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download/"
 
52
  _BIOBERT_NER_DATASET_DIRECTORY = "s800"
53
  _TRAINING_FILE = "train.tsv"
54
  _DEV_FILE = "devel.tsv"
@@ -98,26 +96,22 @@ class Species800(datasets.GeneratorBasedBuilder):
98
 
99
  def _split_generators(self, dl_manager):
100
  """Returns SplitGenerators."""
101
- urls_to_download = {
102
- "biobert_ner_datasets": _URL,
103
- }
104
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
105
- dataset_directory = os.path.join(downloaded_files["biobert_ner_datasets"], _BIOBERT_NER_DATASET_DIRECTORY)
106
 
107
  return [
108
  datasets.SplitGenerator(
109
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dataset_directory, _TRAINING_FILE)}
110
  ),
111
  datasets.SplitGenerator(
112
- name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dataset_directory, _DEV_FILE)}
113
  ),
114
  datasets.SplitGenerator(
115
- name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dataset_directory, _TEST_FILE)}
116
  ),
117
  ]
118
 
119
  def _generate_examples(self, filepath):
120
- logger.info("⏳ Generating examples from = %s", filepath)
121
  with open(filepath, encoding="utf-8") as f:
122
  guid = 0
123
  tokens = []
 
21
  import datasets
22
 
23
 
 
 
 
24
  _CITATION = """\
25
  @article{pafilis2013species,
26
  title={The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text},
 
45
  """
46
 
47
  _HOMEPAGE = "https://species.jensenlab.org/"
48
+ # Source data from: http://nlp.dmis.korea.edu/projects/biobert-2020-checkpoints/NERdata.zip
49
+ _URL = "data/s800.zip"
50
  _BIOBERT_NER_DATASET_DIRECTORY = "s800"
51
  _TRAINING_FILE = "train.tsv"
52
  _DEV_FILE = "devel.tsv"
 
96
 
97
  def _split_generators(self, dl_manager):
98
  """Returns SplitGenerators."""
99
+ dl_dir = dl_manager.download_and_extract(_URL)
100
+ data_dir = os.path.join(dl_dir, _BIOBERT_NER_DATASET_DIRECTORY)
 
 
 
101
 
102
  return [
103
  datasets.SplitGenerator(
104
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, _TRAINING_FILE)}
105
  ),
106
  datasets.SplitGenerator(
107
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, _DEV_FILE)}
108
  ),
109
  datasets.SplitGenerator(
110
+ name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, _TEST_FILE)}
111
  ),
112
  ]
113
 
114
  def _generate_examples(self, filepath):
 
115
  with open(filepath, encoding="utf-8") as f:
116
  guid = 0
117
  tokens = []