File size: 6,668 Bytes
c633a0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
[
{
"id": 0,
"page": 5,
"bounding_box": [
184.66600036621094,
198.38800048828125,
427.3340148925781,
309.968994140625
],
"latex_content": "\\begin{table}[H]\n\\caption{Classification and regression modules present in the current AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Classification} & \\textbf{Regression} \\\\ \\hline\n Random Forest & Random Forest \\\\ \\hline\n Gradient Boosting & Gradient Boosting \\\\ \\hline\n Logistic Regression & Logistic Regression \\\\ \\hline\n Ridge Classifier & Ridge \\\\ \\hline\n Naive Bayes & Lasso \\\\ \\hline\n SVM & Support Vector Regression\\\\ \\hline\n Nearest Neighbors & Linear Regressor \\\\ \\hline\n\n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Classification",
"Regression"
],
[
"Random Forest",
"Random Forest"
],
[
"Gradient Boosting",
"Gradient Boosting"
],
[
"Logistic Regression",
"Logistic Regression"
],
[
"Ridge Classifier",
"Ridge"
],
[
"Naive Bayes",
"Lasso"
],
[
"SVM",
"Support Vector Regression"
],
[
"Nearest Neighbors",
"Linear Regressor"
]
],
"similarity_score": 1.0,
"table_image": "images/1507.02188v1/table_0.png",
"page_image": "pages/1507.02188v1/page_5.png"
},
{
"id": 1,
"page": 6,
"bounding_box": [
138.7310028076172,
128.52099609375,
473.2690124511719,
212.20697021484375
],
"latex_content": "\\begin{table}[H]\n\\caption{Datasets used for testing AutoCompete framework}\n\\begin{center}\n \\begin{tabular}{ | l | l | p{5cm} |}\n \\hline\n \\textbf{Dataset} & \\textbf{No. of Variables} & \\textbf{Task Type} \\\\ \\hline\n MNIST & 784 & Multiclass Classification \\\\ \\hline\n Newsgroup-20 & \\textasciitilde 100k & Multiclass Classification \\\\ \\hline\n Adult & 14 & Binary Classification\\\\ \\hline\n Smartphone & 561 & Binary Classification \\\\ \\hline\n Housing & 14 & Regression \\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Dataset",
"No. of Variables",
"Task Type"
],
[
"MNIST",
"784",
"Multiclass Classification"
],
[
"Newsgroup-20",
"\u02dc100k",
"Multiclass Classification"
],
[
"Adult",
"14",
"Binary Classification"
],
[
"Smartphone",
"561",
"Binary Classification"
],
[
"Housing",
"14",
"Regression"
]
],
"similarity_score": 0.9622641509433962,
"table_image": "images/1507.02188v1/table_1.png",
"page_image": "pages/1507.02188v1/page_6.png"
},
{
"id": 2,
"page": 7,
"bounding_box": [
208.1280059814453,
91.06097412109375,
403.87200927734375,
160.79901123046875
],
"latex_content": "\\begin{table}[H]\n\\caption{Results on MNIST dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Accuracy Score} \\\\ \\hline\n Convnets & 99.8\\% \\\\ \\hline\n hyperopt-sklearn & 98.7\\% \\\\ \\hline\n libsvm grid-search & 98.6\\%\\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{96\\%}\\\\ \\hline\n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Algorithm",
"Accuracy Score"
],
[
"Convnets",
"99.8%"
],
[
"hyperopt-sklearn",
"98.7%"
],
[
"libsvm grid-search",
"98.6%"
],
[
"AutoCompete",
"96%"
]
],
"similarity_score": 0.9801980198019802,
"table_image": "images/1507.02188v1/table_2.png",
"page_image": "pages/1507.02188v1/page_7.png"
},
{
"id": 3,
"page": 7,
"bounding_box": [
177.53799438476562,
258.9730224609375,
434.46216837565106,
328.71099853515625
],
"latex_content": "\\begin{table}[H]\n\\caption{Results on Newsgroups-20 dataset}\n\\begin{center}\n \\begin{tabular}{ | l | l |}\n \\hline\n \\textbf{Algorithm} & \\textbf{Weighted Average F1 Score} \\\\ \\hline\n \\textbf{AutoCompete} & \\textbf{0.864}\\\\ \\hline\n hyperopt-sklearn & 0.856 \\\\ \\hline\n SVMTorch & 0.848 \\\\ \\hline\n LibSVM & 0.843 \\\\ \\hline\n \n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Algorithm",
"Weighted Average F1 Score"
],
[
"AutoCompete",
"0.864"
],
[
"hyperopt-sklearn",
"0.856"
],
[
"SVMTorch",
"0.848"
],
[
"LibSVM",
"0.843"
]
],
"similarity_score": 1.0,
"table_image": "images/1507.02188v1/table_3.png",
"page_image": "pages/1507.02188v1/page_7.png"
},
{
"id": 4,
"page": 7,
"bounding_box": [
154.718994140625,
466.9259948730469,
457.28114536830356,
550.6119995117188
],
"latex_content": "\\begin{table}[H]\n\\caption{Selected pipeline and evaluation score for different datasets}\n\\begin{center}\n \\begin{tabular}{ | l | l | l |}\n \\hline\n \\textbf{Dataset} & \\textbf{Selected Pipeline} & \\textbf{Evaluation Score} \\\\ \\hline\n Smartphone & Logistic Regression & 0.921 (AUC) \\\\ \\hline\n\tHousing & RF(Features) + SVR & 2.3 (RMSE) \\\\ \\hline \n\tMNIST & PCA + RF & 0.96 (Accuracy) \\\\ \\hline\n\tNewsgroup-20 & TFIDF + LR & 0.864 (Weighted F1) \\\\ \\hline\n\tAdult & Model Stacker & 0.85 (AUC) \\\\ \\hline \n \\end{tabular}\n\\end{center}\n\\end{table}",
"extracted_content": [
[
"Dataset",
"Selected Pipeline",
"Evaluation Score"
],
[
"Smartphone",
"Logistic Regression",
"0.921 (AUC)"
],
[
"Housing",
"RF(Features) + SVR",
"2.3 (RMSE)"
],
[
"MNIST",
"PCA + RF",
"0.96 (Accuracy)"
],
[
"Newsgroup-20",
"TFIDF + LR",
"0.864 (Weighted F1)"
],
[
"Adult",
"Model Stacker",
"0.85 (AUC)"
]
],
"similarity_score": 1.0,
"table_image": "images/1507.02188v1/table_4.png",
"page_image": "pages/1507.02188v1/page_7.png"
}
] |