|
[ |
|
{ |
|
"id": 0, |
|
"page": 7, |
|
"bounding_box": [ |
|
72.83499908447266, |
|
146.5009765625, |
|
503.1652038574219, |
|
231.781005859375 |
|
], |
|
"latex_content": "\\begin{table}\n \\centering\n \\begin{tabular}{|c|p{5cm}|p{5cm}|}\n \\hline\n Concept & SQL & \\R (\\cmd{dplyr}) \\\\\n \\hline\n Filter by rows \\& columns \n & \\cmd{SELECT col1, col2 FROM $a$ WHERE col3 = 'x'} \n & \\cmd{select(filter($a$, col3 == \"x\"), col1, col2)} \\\\\n \\hline\n Aggregate by rows \n & \\cmd{SELECT id, sum(col1) as total FROM $a$ GROUP BY id} \n & \\cmd{summarise(group\\_by($a$, id), total = sum(col1))} \\\\\n% & \\cmd{ddply($a$[,c(id, col1)], $\\sim$ id, sum)} \\\\\n \\hline\n Combine two tables \n & \\cmd{SELECT * FROM $a$ JOIN $b$ ON a.id = b.id} \n & \\cmd{inner\\_join(x=$a$, y=$b$, by=\"id\"))} \\\\\n \\hline\n \\end{tabular}\n \\caption{Conceptually analogous SQL and \\R commands. Suppose $a$ and $b$ are SQL tables or \\R \\cmd{data.frame}s}\n \\label{tab:sql-r}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Concept", |
|
"SQL", |
|
"R (dplyr)" |
|
], |
|
[ |
|
"Filter by rows & columns", |
|
"SELECT col1, col2 FROM a\nWHERE col3 = \u2019x\u2019", |
|
"select(filter(a, col3 ==\n\"x\"), col1, col2)" |
|
], |
|
[ |
|
"Aggregate by rows", |
|
"SELECT id, sum(col1) as\ntotal FROM a GROUP BY id", |
|
"summarise(group by(a, id),\ntotal = sum(col1))" |
|
], |
|
[ |
|
"Combine two tables", |
|
"SELECT * FROM a JOIN b ON\na.id = b.id", |
|
"inner join(x=a, y=b,\nby=\"id\"))" |
|
] |
|
], |
|
"similarity_score": 0.815, |
|
"table_image": "images/1503.05570v1/table_0.png", |
|
"page_image": "pages/1503.05570v1/page_7.png" |
|
} |
|
] |