|
[ |
|
{ |
|
"id": 0, |
|
"page": 14, |
|
"bounding_box": [ |
|
175.91109924316407, |
|
53.33697509765625, |
|
429.4549987792969, |
|
120.38897705078125 |
|
], |
|
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\nLearner & 1 &2 &3 & 4\\\\\n\\hline\nClassification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S1) & Logistic & Voted Perceptron &J48 & Always $0$\\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\\npercentage (S1) & 3 & 4 & 47 & 47\\\\\n\\hline\n Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S2) & Random & Random & J48 & Always $0$ \\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\ \npercentage (S2) & 50 & 50 & 47 & 47 \\\\\n\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.1in}}\n\\caption{Simulation setup}\n\\vspace{-0.25in}\n\\label{tab:sim_setup}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Learner", |
|
"1", |
|
"2", |
|
"3", |
|
"4" |
|
], |
|
[ |
|
"Classification\nFunction (S1)", |
|
"Naive Bayes,\nLogistic", |
|
"Always 1,\nVoted Perceptron", |
|
"RBF Network,\nJ48", |
|
"Random Tree,\nAlways 0" |
|
], |
|
[ |
|
"Error\npercentage (S1)", |
|
"47,\n3", |
|
"53,\n4", |
|
"47,\n47", |
|
"47,\n47" |
|
], |
|
[ |
|
"Classification\nFunction (S2)", |
|
"Naive Bayes,\nRandom", |
|
"Always 1,\nRandom", |
|
"RBF Network,\nJ48", |
|
"Random Tree,\nAlways 0" |
|
], |
|
[ |
|
"Error\npercentage (S2)", |
|
"47,\n50", |
|
"53,\n50", |
|
"47,\n47", |
|
"47,\n47" |
|
] |
|
], |
|
"similarity_score": 0.5048543689320388, |
|
"table_image": "images/1307.0781v1/table_0.png", |
|
"page_image": "pages/1307.0781v1/page_14.png" |
|
}, |
|
{ |
|
"id": 1, |
|
"page": 14, |
|
"bounding_box": [ |
|
212.12024688720703, |
|
151.96697998046875, |
|
393.2457580566406, |
|
179.71002197265625 |
|
], |
|
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|c|}\n\\hline\n & $D_1(t)$ & $D_2(t)$ & $D_3(t)$ & $m_T$ \\\\\n\\hline\n(C1) CoS & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & $\\lceil T \\rceil^{1/4}$ \\\\\n\\hline\n%(C1) DCZA & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & & $1$ & $4$ \\\\\n%\\hline\n(C2) CoS & $t^{1/2} \\log t$ & $2 t^{1/2} \\log t$ & $t^{1/2} \\log t$ & $\\lceil T \\rceil^{1/4}$ \\\\\n\\hline\n%(C2) DCZA & $t^{2/p} \\log t$ & $2 t^{2/p} \\log t$ & $t^{2/p} \\log t$ & & $1$ & $(3+\\sqrt{17})/2$ \\\\\n%\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Parameters for CoS}\n\\label{tab:par_setup}\n\\add{\\vspace{-0.4in}}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"", |
|
"D1(t)", |
|
"D2(t)", |
|
"D3(t)", |
|
"mT" |
|
], |
|
[ |
|
"(C1) CoS", |
|
"t1/8 log t", |
|
"2t1/8 log t", |
|
"t1/8 log t", |
|
"\u2308T\u23091/4" |
|
], |
|
[ |
|
"(C2) CoS", |
|
"t1/2 log t", |
|
"2t1/2 log t", |
|
"t1/2 log t", |
|
"\u2308T\u23091/4" |
|
] |
|
], |
|
"similarity_score": 0.5446009389671361, |
|
"table_image": "images/1307.0781v1/table_1.png", |
|
"page_image": "pages/1307.0781v1/page_14.png" |
|
}, |
|
{ |
|
"id": 2, |
|
"page": 3, |
|
"bounding_box": [ |
|
176.27973225911458, |
|
53.33697509765625, |
|
429.19012451171875, |
|
155.47601318359375 |
|
], |
|
"latex_content": "\\begin{table}[t]\n\\centering\n{\\renewcommand{\\arraystretch}{0.6}\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n& \\cite{breiman1996bagging, buhlmann2003boosting, lazarevic2001distributed, chen2004channel, perlich2011cross} & \\cite{mateos2010distributed, kargupta1999collective} & \\cite{zheng2011attribute} & This work \\\\\n\\hline\nAggregation & non-cooperative & cooperative & cooperative & \\rev{no} \\\\\n\\hline\nMessage & none & data & training & data and label \\\\\nexchange & & & residual & only if improves \\\\\n& & & & performance \\\\\n\\hline\nLearning & offline/online & offline & offline & Non-bayesian \\\\\napproach&&&& online\\\\\n\\hline\nCorrelation & N/A & no & no & yes\\\\\nexploitation & & & &\\\\\n\\hline\nInformation from & no & all & all & only if improves \\\\\nother learners & & & & accuracy \\\\\n\\hline\nData partition & horizontal & horizontal & vertical & horizontal \\\\\n\\hline\nBound on regret, & no &no &no &yes - sublinear\\\\\nconvergence rate &&&&\\\\\n\\hline\n\\end{tabular}\n}\n}\n\\caption{Comparison with related work in distributed data mining}\n\\label{tab:comparison1}\n\\add{\\vspace{-0.1in}}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"", |
|
"[3], [8], [13]\u2013[15]", |
|
"[7], [9]", |
|
"[5]", |
|
"This work" |
|
], |
|
[ |
|
"Aggregation", |
|
"non-cooperative", |
|
"cooperative", |
|
"cooperative", |
|
"no" |
|
], |
|
[ |
|
"Message\nexchange", |
|
"none", |
|
"data", |
|
"training\nresidual", |
|
"data and label\nonly if improves\nperformance" |
|
], |
|
[ |
|
"Learning\napproach", |
|
"offline/online", |
|
"offline", |
|
"offline", |
|
"Non-bayesian\nonline" |
|
], |
|
[ |
|
"Correlation\nexploitation", |
|
"N/A", |
|
"no", |
|
"no", |
|
"yes" |
|
], |
|
[ |
|
"Information from\nother learners", |
|
"no", |
|
"all", |
|
"all", |
|
"only if improves\naccuracy" |
|
], |
|
[ |
|
"Data partition", |
|
"horizontal", |
|
"horizontal", |
|
"vertical", |
|
"horizontal" |
|
], |
|
[ |
|
"Bound on regret,\nconvergence rate", |
|
"no", |
|
"no", |
|
"no", |
|
"yes - sublinear" |
|
] |
|
], |
|
"similarity_score": 0.47578589634664403, |
|
"table_image": "images/1307.0781v1/table_2.png", |
|
"page_image": "pages/1307.0781v1/page_3.png" |
|
}, |
|
{ |
|
"id": 3, |
|
"page": 3, |
|
"bounding_box": [ |
|
179.8161277770996, |
|
191.3740234375, |
|
429.19012451171875, |
|
243.114990234375 |
|
], |
|
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.25em}\n\\vspace{-0.2in}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n&\\cite{slivkins2009contextual, dudik2011efficient, langford2007epoch, chu2011contextual} & \\cite{hliu1, anandkumar, tekin2012sequencing} & \\cite{tekin4} & This work \\\\\n\\hline\nMulti-user & no & yes & yes & yes \\\\\n\\hline\nCooperative & N/A & yes & no & yes \\\\\n\\hline\nContextual & yes & no & no & yes \\\\\n\\hline\nData arrival & arbitrary & i.i.d. or Markovian & i.i.d. & i.i.d or arbitrary \\\\\nprocess& & & & \\\\\n\\hline\nRegret & sublinear & logarithmic & may be linear & sublinear \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Comparison with related work in multi-armed bandits}\n\\vspace{-0.35in}\n\\label{tab:comparison2}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"", |
|
"[16]\u2013[19]", |
|
"[23]\u2013[25]", |
|
"[26]", |
|
"This work" |
|
], |
|
[ |
|
"Multi-user", |
|
"no", |
|
"yes", |
|
"yes", |
|
"yes" |
|
], |
|
[ |
|
"Cooperative", |
|
"N/A", |
|
"yes", |
|
"no", |
|
"yes" |
|
], |
|
[ |
|
"Contextual", |
|
"yes", |
|
"no", |
|
"no", |
|
"yes" |
|
], |
|
[ |
|
"Data arrival\nprocess", |
|
"arbitrary", |
|
"i.i.d. or Markovian", |
|
"i.i.d.", |
|
"i.i.d or arbitrary" |
|
], |
|
[ |
|
"Regret", |
|
"sublinear", |
|
"logarithmic", |
|
"may be linear", |
|
"sublinear" |
|
] |
|
], |
|
"similarity_score": 0.6435045317220544, |
|
"table_image": "images/1307.0781v1/table_3.png", |
|
"page_image": "pages/1307.0781v1/page_3.png" |
|
} |
|
] |