staghado's picture
Upload folder using huggingface_hub
c633a0a verified
raw
history blame
7.93 kB
[
{
"id": 0,
"page": 14,
"bounding_box": [
175.91109924316407,
53.33697509765625,
429.4549987792969,
120.38897705078125
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\nLearner & 1 &2 &3 & 4\\\\\n\\hline\nClassification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S1) & Logistic & Voted Perceptron &J48 & Always $0$\\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\\npercentage (S1) & 3 & 4 & 47 & 47\\\\\n\\hline\n Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S2) & Random & Random & J48 & Always $0$ \\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\ \npercentage (S2) & 50 & 50 & 47 & 47 \\\\\n\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.1in}}\n\\caption{Simulation setup}\n\\vspace{-0.25in}\n\\label{tab:sim_setup}\n\\end{table}",
"extracted_content": [
[
"Learner",
"1",
"2",
"3",
"4"
],
[
"Classification\nFunction (S1)",
"Naive Bayes,\nLogistic",
"Always 1,\nVoted Perceptron",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S1)",
"47,\n3",
"53,\n4",
"47,\n47",
"47,\n47"
],
[
"Classification\nFunction (S2)",
"Naive Bayes,\nRandom",
"Always 1,\nRandom",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S2)",
"47,\n50",
"53,\n50",
"47,\n47",
"47,\n47"
]
],
"similarity_score": 0.5048543689320388,
"table_image": "images/1307.0781v1/table_0.png",
"page_image": "pages/1307.0781v1/page_14.png"
},
{
"id": 1,
"page": 14,
"bounding_box": [
212.12024688720703,
151.96697998046875,
393.2457580566406,
179.71002197265625
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|c|}\n\\hline\n & $D_1(t)$ & $D_2(t)$ & $D_3(t)$ & $m_T$ \\\\\n\\hline\n(C1) CoS & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & $\\lceil T \\rceil^{1/4}$ \\\\\n\\hline\n%(C1) DCZA & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & & $1$ & $4$ \\\\\n%\\hline\n(C2) CoS & $t^{1/2} \\log t$ & $2 t^{1/2} \\log t$ & $t^{1/2} \\log t$ & $\\lceil T \\rceil^{1/4}$ \\\\\n\\hline\n%(C2) DCZA & $t^{2/p} \\log t$ & $2 t^{2/p} \\log t$ & $t^{2/p} \\log t$ & & $1$ & $(3+\\sqrt{17})/2$ \\\\\n%\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Parameters for CoS}\n\\label{tab:par_setup}\n\\add{\\vspace{-0.4in}}\n\\end{table}",
"extracted_content": [
[
"",
"D1(t)",
"D2(t)",
"D3(t)",
"mT"
],
[
"(C1) CoS",
"t1/8 log t",
"2t1/8 log t",
"t1/8 log t",
"\u2308T\u23091/4"
],
[
"(C2) CoS",
"t1/2 log t",
"2t1/2 log t",
"t1/2 log t",
"\u2308T\u23091/4"
]
],
"similarity_score": 0.5446009389671361,
"table_image": "images/1307.0781v1/table_1.png",
"page_image": "pages/1307.0781v1/page_14.png"
},
{
"id": 2,
"page": 3,
"bounding_box": [
176.27973225911458,
53.33697509765625,
429.19012451171875,
155.47601318359375
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\renewcommand{\\arraystretch}{0.6}\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n& \\cite{breiman1996bagging, buhlmann2003boosting, lazarevic2001distributed, chen2004channel, perlich2011cross} & \\cite{mateos2010distributed, kargupta1999collective} & \\cite{zheng2011attribute} & This work \\\\\n\\hline\nAggregation & non-cooperative & cooperative & cooperative & \\rev{no} \\\\\n\\hline\nMessage & none & data & training & data and label \\\\\nexchange & & & residual & only if improves \\\\\n& & & & performance \\\\\n\\hline\nLearning & offline/online & offline & offline & Non-bayesian \\\\\napproach&&&& online\\\\\n\\hline\nCorrelation & N/A & no & no & yes\\\\\nexploitation & & & &\\\\\n\\hline\nInformation from & no & all & all & only if improves \\\\\nother learners & & & & accuracy \\\\\n\\hline\nData partition & horizontal & horizontal & vertical & horizontal \\\\\n\\hline\nBound on regret, & no &no &no &yes - sublinear\\\\\nconvergence rate &&&&\\\\\n\\hline\n\\end{tabular}\n}\n}\n\\caption{Comparison with related work in distributed data mining}\n\\label{tab:comparison1}\n\\add{\\vspace{-0.1in}}\n\\end{table}",
"extracted_content": [
[
"",
"[3], [8], [13]\u2013[15]",
"[7], [9]",
"[5]",
"This work"
],
[
"Aggregation",
"non-cooperative",
"cooperative",
"cooperative",
"no"
],
[
"Message\nexchange",
"none",
"data",
"training\nresidual",
"data and label\nonly if improves\nperformance"
],
[
"Learning\napproach",
"offline/online",
"offline",
"offline",
"Non-bayesian\nonline"
],
[
"Correlation\nexploitation",
"N/A",
"no",
"no",
"yes"
],
[
"Information from\nother learners",
"no",
"all",
"all",
"only if improves\naccuracy"
],
[
"Data partition",
"horizontal",
"horizontal",
"vertical",
"horizontal"
],
[
"Bound on regret,\nconvergence rate",
"no",
"no",
"no",
"yes - sublinear"
]
],
"similarity_score": 0.47578589634664403,
"table_image": "images/1307.0781v1/table_2.png",
"page_image": "pages/1307.0781v1/page_3.png"
},
{
"id": 3,
"page": 3,
"bounding_box": [
179.8161277770996,
191.3740234375,
429.19012451171875,
243.114990234375
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.25em}\n\\vspace{-0.2in}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n&\\cite{slivkins2009contextual, dudik2011efficient, langford2007epoch, chu2011contextual} & \\cite{hliu1, anandkumar, tekin2012sequencing} & \\cite{tekin4} & This work \\\\\n\\hline\nMulti-user & no & yes & yes & yes \\\\\n\\hline\nCooperative & N/A & yes & no & yes \\\\\n\\hline\nContextual & yes & no & no & yes \\\\\n\\hline\nData arrival & arbitrary & i.i.d. or Markovian & i.i.d. & i.i.d or arbitrary \\\\\nprocess& & & & \\\\\n\\hline\nRegret & sublinear & logarithmic & may be linear & sublinear \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Comparison with related work in multi-armed bandits}\n\\vspace{-0.35in}\n\\label{tab:comparison2}\n\\end{table}",
"extracted_content": [
[
"",
"[16]\u2013[19]",
"[23]\u2013[25]",
"[26]",
"This work"
],
[
"Multi-user",
"no",
"yes",
"yes",
"yes"
],
[
"Cooperative",
"N/A",
"yes",
"no",
"yes"
],
[
"Contextual",
"yes",
"no",
"no",
"yes"
],
[
"Data arrival\nprocess",
"arbitrary",
"i.i.d. or Markovian",
"i.i.d.",
"i.i.d or arbitrary"
],
[
"Regret",
"sublinear",
"logarithmic",
"may be linear",
"sublinear"
]
],
"similarity_score": 0.6435045317220544,
"table_image": "images/1307.0781v1/table_3.png",
"page_image": "pages/1307.0781v1/page_3.png"
}
]