[ { "id": 0, "page": 11, "bounding_box": [ 312.14712142944336, 53.33697509765625, 564.7523803710938, 120.38897705078125 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\nLearner & 1 &2 &3 & 4\\\\\n\\hline\nClassification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S1) & Logistic & Voted Perceptron &J48 & Always $0$\\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\\npercentage (S1) & 3 & 4 & 47 & 47\\\\\n\\hline\n Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S2) & Random & Random & J48 & Always $0$ \\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\ \npercentage (S2) & 50 & 50 & 47 & 47 \\\\\n\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.1in}}\n\\caption{Base classification functions used by the learners and their error percentages on the test data.}\n\\vspace{-0.25in}\n\\label{tab:sim_setup}\n\\end{table}", "extracted_content": [ [ "Learner", "1", "2", "3", "4" ], [ "Classification\nFunction (S1)", "Naive Bayes,\nLogistic", "Always 1,\nVoted Perceptron", "RBF Network,\nJ48", "Random Tree,\nAlways 0" ], [ "Error\npercentage (S1)", "47,\n3", "53,\n4", "47,\n47", "47,\n47" ], [ "Classification\nFunction (S2)", "Naive Bayes,\nRandom", "Always 1,\nRandom", "RBF Network,\nJ48", "Random Tree,\nAlways 0" ], [ "Error\npercentage (S2)", "47,\n50", "53,\n50", "47,\n47", "47,\n47" ] ], "similarity_score": 0.4544319600499376, "table_image": "images/1308.4565v2/table_0.png", "page_image": "pages/1308.4565v2/page_11.png" }, { "id": 1, "page": 11, "bounding_box": [ 312.14712142944336, 152.52099609375, 564.7523803710938, 199.4580078125 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|c|c|c|}\n\\hline\n & $D_1(t)$ & $D_2(t)$ & $D_3(t)$ & $m_T$ & $A$ & $p$ \\\\\n\\hline\n(Z1) CoS & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & $\\lceil T \\rceil^{1/4}$ & & \\\\\n\\hline\n(Z1) DCZA & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & & $1$ & $4$ \\\\\n\\hline\n(Z2) CoS & $t^{1/2} \\log t$ & $2 t^{1/2} \\log t$ & $t^{1/2} \\log t$ & $\\lceil T \\rceil^{1/4}$ & & \\\\\n\\hline\n(Z2) DCZA & $t^{2/p} \\log t$ & $2 t^{2/p} \\log t$ & $t^{2/p} \\log t$ & & $1$ & $(3+\\sqrt{17})/2$ \\\\\n\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Input parameters for CoS and DCZA for two different parameter sets Z1 and Z2.}\n\\label{tab:par_setup}\n\\add{\\vspace{-0.4in}}\n\\end{table}", "extracted_content": [ [ "", "D1(t)", "D2(t)", "D3(t)", "mT", "A", "p" ], [ "(Z1) CoS", "t1/8 log t", "2t1/8 log t", "t1/8 log t", "\u2308T\u23091/4", "", "" ], [ "(Z1) DCZA", "t1/8 log t", "2t1/8 log t", "t1/8 log t", "", "1", "4" ], [ "(Z2) CoS", "t1/2 log t", "2t1/2 log t", "t1/2 log t", "\u2308T\u23091/4", "", "" ], [ "(Z2) DCZA", "t2/p log t", "2t2/p log t", "t2/p log t", "", "1", "\u221a\n(3 + 17)/2" ] ], "similarity_score": 0.52, "table_image": "images/1308.4565v2/table_1.png", "page_image": "pages/1308.4565v2/page_11.png" }, { "id": 2, "page": 12, "bounding_box": [ 56.45712375640869, 53.33697509765625, 286.24386978149414, 107.27099609375 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|}\n\\hline\n(Parameters) Algorithm & (S1) Error $\\%$ & (S2) Error $\\%$ \\\\\n\\hline\n(Z1) CoS (previous label as context) & 0.7 & 0.9 \\\\\n\\hline\n(Z1) DCZA (previous label as context) & 1.4 & 1.9 \\\\\n\\hline\nAdaBoost & 4.8 & 53 \\\\\n\\hline\n($w=100$) SWA & 2.4 & 2.7 \\\\\n\\hline\n($w=1000$) SWA & 11 & 11 \\\\\n\\hline\n(Z1) CoS (no-context) & 5.2 & 49.8 \\\\\n\\hline \n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Comparison of error percentages of CoS, DCZA, AdaBoost, SWA and CoS with no context.}\n\\label{tab:error_comp}\n\\vspace{-0.2in}\n%\\vspace{-0.4in}\n\\end{table}", "extracted_content": [ [ "(Parameters) Algorithm", "(S1) Error %", "(S2) Error %" ], [ "(Z1) CoS (previous label as context)", "0.7", "0.9" ], [ "(Z1) DCZA (previous label as context)", "1.4", "1.9" ], [ "AdaBoost", "4.8", "53" ], [ "(w = 100) SWA", "2.4", "2.7" ], [ "(w = 1000) SWA", "11", "11" ], [ "(Z1) CoS (no-context)", "5.2", "49.8" ] ], "similarity_score": 0.7660311958405546, "table_image": "images/1308.4565v2/table_2.png", "page_image": "pages/1308.4565v2/page_12.png" }, { "id": 3, "page": 12, "bounding_box": [ 49.136778089735245, 146.8626708984375, 302.0871107313368, 208.0789794921875 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|}\n\\hline\n(Setting) & Error $\\%$ & Training $\\%$ & Exploration $\\%$ \\\\\nAlgorithm & context=A1,A2,A3 & context=A1,A2,A3 & context=A1,A2,A3 \\\\\n\\hline\n(Z1,S1) CoS & 0.7, 4.6, 4.8 & 0.3, 3, 2.8 & 1.4, 6.3, 8.5 \\\\\n\\hline\n(Z1,S1) DCZA & 1.4, 3.5, 3.2 & 0.4, 1.3, 0.9 & 4, 5.9, 7 \\\\\n\\hline\n(Z1,S2) CoS & 0.9, 39, 10 & 0.3, 3, 2.8 & 1.5, 6.5, 8.6 \\\\\n\\hline\n(Z1,S2) DCZA & 1.9, 38, 4.8 & 0.4, 1.3, 1 & 4, 6, 7 \\\\\n\\hline\n(Z2,S1) CoS & 16, 14, 41 & 8.5, 16, 79 & 55 27 20\\\\\n\\hline\n(Z2,S1) DCZA & 31, 29, 29 & 33 19 87 & 66 66 12 \\\\\n\\hline \n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Error, training and exploration percentages of CoS and DCZA under different simulation and parameter settings. (A1) context as the previous label, (A2) context as srcbytes feature, (A3) context as time.}\n\\label{tab:sim_results}\n%\\vspace{-0.4in}\n\\vspace{-0.2in}\n\\end{table}", "extracted_content": [ [ "(Setting)\nAlgorithm", "Error %\ncontext=A1,A2,A3", "Training %\ncontext=A1,A2,A3", "Exploration %\ncontext=A1,A2,A3" ], [ "(Z1,S1) CoS", "0.7, 4.6, 4.8", "0.3, 3, 2.8", "1.4, 6.3, 8.5" ], [ "(Z1,S1) DCZA", "1.4, 3.5, 3.2", "0.4, 1.3, 0.9", "4, 5.9, 7" ], [ "(Z1,S2) CoS", "0.9, 39, 10", "0.3, 3, 2.8", "1.5, 6.5, 8.6" ], [ "(Z1,S2) DCZA", "1.9, 38, 4.8", "0.4, 1.3, 1", "4, 6, 7" ], [ "(Z2,S1) CoS", "16, 14, 41", "8.5, 16, 79", "55 27 20" ], [ "(Z2,S1) DCZA", "31, 29, 29", "33 19 87", "66 66 12" ] ], "similarity_score": 0.6673228346456693, "table_image": "images/1308.4565v2/table_3.png", "page_image": "pages/1308.4565v2/page_12.png" }, { "id": 4, "page": 12, "bounding_box": [ 315.0172058105469, 53.33697509765625, 557.1978149414062, 84.12298583984375 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|}\n\\hline\n(Setting) & Error $\\%$ & Training $\\%$ & Exploration $\\%$ \\\\\nAlgorithm & context=A1,A2,A3 & context=A1,A2,A3 & context=A1,A2,A3 \\\\\n\\hline\n(Z1,S1) CoS & 1.8, 4.1, 6.7 & 2, 9.2, 10.3 & 1.4, 3.6, 8.5 \\\\\n\\hline\n(Z1,S2) CoS & 24.6, 44.3, 31.3 & 2, 9.2, 10.3 & 1.4, 3.6, 8.5 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error, training and exploration percentages of CoS for worst-case correlation between the learners for three different context types.}\n\\label{tab:sim_results2}\n\\vspace{-0.2in}\n%\\vspace{-0.4in}\n\\end{table}", "extracted_content": [ [ "(Setting)\nAlgorithm", "Error %\ncontext=A1,A2,A3", "Training %\ncontext=A1,A2,A3", "Exploration %\ncontext=A1,A2,A3" ], [ "(Z1,S1) CoS", "1.8, 4.1, 6.7", "2, 9.2, 10.3", "1.4, 3.6, 8.5" ], [ "(Z1,S2) CoS", "24.6, 44.3, 31.3", "2, 9.2, 10.3", "1.4, 3.6, 8.5" ] ], "similarity_score": 0.5601374570446735, "table_image": "images/1308.4565v2/table_4.png", "page_image": "pages/1308.4565v2/page_12.png" }, { "id": 5, "page": 12, "bounding_box": [ 315.0172058105469, 131.89801025390625, 557.1978149414062, 162.83367919921875 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|}\n\\hline\nensemble CoS & context-dependent weights & context-indep weights \\\\\nParameters: Z1 & S1, S2 & S1, S2 \\\\\n\\hline\ntotal error $\\%$ & 5.9, 10.2 & 3.8, 4.94 \\\\\n\\hline\nexploitation error $\\%$ & 2.9, 6.8 & 1.76, 2.17 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Total error percentage, and error percentage of the errors made in exploitation steps for CoS with ensemble learner.}\n\\label{tab:weights}\n%\\vspace{-0.4in}\n\\vspace{-0.2in}\n\\end{table}", "extracted_content": [ [ "ensemble CoS\nParameters: Z1", "context-dependent weights\nS1, S2", "context-indep weights\nS1, S2" ], [ "total error %", "5.9, 10.2", "3.8, 4.94" ], [ "exploitation error %", "2.9, 6.8", "1.76, 2.17" ] ], "similarity_score": 0.5910064239828694, "table_image": "images/1308.4565v2/table_5.png", "page_image": "pages/1308.4565v2/page_12.png" }, { "id": 6, "page": 13, "bounding_box": [ 75.31724739074707, 53.33697509765625, 270.87100982666016, 76.99033610026042 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n(Setting) Algorithm /$p_r$ & 1 & 0.5 & 0.1 & 0.01 \\\\\n\\hline\n(Z1,S2) CoS (context is time) error $\\%$ & 10 & 13.9 & 36.4 & 47.1 \\\\\n\\hline\n(Z1,S2) DCZA (context is time) error $\\%$ & 4.8 & 4.8 & 16.3 & 56.6 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error percentages of CoS and DCZA as a function of $p_r$ (probability of receiving the label at each time slot) when context is time.}\n\\vspace{-0.2in}\n\\label{tab:errorperc}\n\\end{table}", "extracted_content": [ [ "(Setting) Algorithm /pr", "1", "0.5", "0.1", "0.01" ], [ "(Z1,S2) CoS (context is time) error %", "10", "13.9", "36.4", "47.1" ], [ "(Z1,S2) DCZA (context is time) error %", "4.8", "4.8", "16.3", "56.6" ] ], "similarity_score": 0.6533333333333333, "table_image": "images/1308.4565v2/table_6.png", "page_image": "pages/1308.4565v2/page_13.png" }, { "id": 7, "page": 13, "bounding_box": [ 115.25924873352051, 127.00900268554688, 230.9290008544922, 150.31732177734375 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n$\\#$ of learners & 1 & 2 & 3 & 4 \\\\\n\\hline\nCoS error $\\%$ & 49.8 & 49.7 & 50.2 & 22.3 \\\\\n\\hline\nDCZA error $\\%$ & 49.8 & 49.8 & 49.8 & 22.7 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error percentages of CoS and DCZA for learner 1, as a function of the number of learners present in the system.}\n\\vspace{-0.2in}\n\\label{tab:nlearn}\n\\end{table}", "extracted_content": [ [ "# of learners", "1", "2", "3", "4" ], [ "CoS error %", "49.8", "49.7", "50.2", "22.3" ], [ "DCZA error %", "49.8", "49.8", "49.8", "22.7" ] ], "similarity_score": 0.5503355704697986, "table_image": "images/1308.4565v2/table_7.png", "page_image": "pages/1308.4565v2/page_13.png" }, { "id": 8, "page": 13, "bounding_box": [ 321.277837117513, 53.33697509765625, 550.9371643066406, 91.61798095703125 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\nd & error $\\%$ & training $\\%$ & selection (except training/exploration) $\\%$ \\\\\n& & of learners 2,3,4 & of learners 1,2,3,4 \\\\ \n\\hline\n0 & 0.9 & 0.27, 0.23, 0.16 & 52.9, 47, 0.1, 0\\\\\n\\hline\n0.5 & 1 & 0.27, 0.23, 0.16 & 53, 47, 0, 0 \\\\\n\\hline\n0.7 & 23.7 &0.27, 0.23, 0.16 & 100, 0, 0, 0\\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error and arm selection percentages as a function of calling cost}\n\\vspace{-0.25in}\n\\label{tab:callcost}\n\\end{table}", "extracted_content": [ [ "d", "error %", "training %\nof learners 2,3,4", "selection (except training/exploration) %\nof learners 1,2,3,4" ], [ "0", "0.9", "0.27, 0.23, 0.16", "52.9, 47, 0.1, 0" ], [ "0.5", "1", "0.27, 0.23, 0.16", "53, 47, 0, 0" ], [ "0.7", "23.7", "0.27, 0.23, 0.16", "100, 0, 0, 0" ] ], "similarity_score": 0.7475538160469667, "table_image": "images/1308.4565v2/table_8.png", "page_image": "pages/1308.4565v2/page_13.png" }, { "id": 9, "page": 13, "bounding_box": [ 328.08721313476565, 127.00900268554688, 544.1278076171875, 159.4329833984375 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|}\n\\hline\n(Setting) Algorithm & previous label (A1) & srcbytes (A2) & time \\\\\n& is context & is context & is context \\\\\n\\hline\n(Z1,S1) CoS error $\\%$ & 2.68 & 3.64 & 6.43 \\\\\n\\hline\n(Z1,S2) CoS error $\\%$ & 23.8 & 42.6 & 29 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error percentages of CoS for learner 1, when learner 1 only sends its context information to the other learners.}\n\\vspace{-0.3in}\n\\label{tab:onlycontext}\n\\end{table}", "extracted_content": [ [ "(Setting) Algorithm", "previous label (A1)\nis context", "srcbytes (A2)\nis context", "time\nis context" ], [ "(Z1,S1) CoS error %", "2.68", "3.64", "6.43" ], [ "(Z1,S2) CoS error %", "23.8", "42.6", "29" ] ], "similarity_score": 0.6311111111111111, "table_image": "images/1308.4565v2/table_9.png", "page_image": "pages/1308.4565v2/page_13.png" }, { "id": 10, "page": 3, "bounding_box": [ 49.1465003490448, 53.33697509765625, 305.9354419708252, 162.17901611328125 ], "latex_content": "\\begin{table}[t]\n\\centering\n{\\renewcommand{\\arraystretch}{0.6}\n{\\fontsize{8}{7}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n& \\cite{breiman1996bagging, buhlmann2003boosting, lazarevic2001distributed, chen2004channel, perlich2011cross} & \\cite{mateos2010distributed, kargupta1999collective} & \\cite{zheng2011attribute} & This work \\\\\n\\hline\nAggregation & non-cooperative & cooperative & cooperative & \\rev{no} \\\\\n\\hline\nMessage & none & data & training & data and label \\\\\nexchange & & & residual & only if improves \\\\\n& & & & performance \\\\\n\\hline\nLearning & offline/online & offline & offline & Non-bayesian \\\\\napproach&&&& online\\\\\n\\hline\nCorrelation & N/A & no & no & yes\\\\\nexploitation & & & &\\\\\n\\hline\nInformation from & no & all & all & only if improves \\\\\nother learners & & & & accuracy \\\\\n\\hline\nData partition & horizontal & horizontal & vertical & horizontal \\\\\n&&&& and vertical \\\\\n\\hline\nBound on regret, & no &no &no &yes - sublinear\\\\\nconvergence rate &&&&\\\\\n\\hline\n\\end{tabular}\n}\n}\n\\caption{Comparison with related work in distributed data mining.}\n\\label{tab:comparison1}\n\\vspace{-0.2in}\n\\end{table}", "extracted_content": [ [ "", "[6], [11], [16]\u2013[18]", "[10], [12]", "[8]", "This work" ], [ "Aggregation", "non-cooperative", "cooperative", "cooperative", "no" ], [ "Message\nexchange", "none", "data", "training\nresidual", "data and label\nonly if improves\nperformance" ], [ "Learning\napproach", "offline/online", "offline", "offline", "Non-bayesian\nonline" ], [ "Correlation\nexploitation", "N/A", "no", "no", "yes" ], [ "Information from\nother learners", "no", "all", "all", "only if improves\naccuracy" ], [ "Data partition", "horizontal", "horizontal", "vertical", "horizontal\nand vertical" ], [ "Bound on regret,\nconvergence rate", "no", "no", "no", "yes - sublinear" ] ], "similarity_score": 0.43297252289758537, "table_image": "images/1308.4565v2/table_10.png", "page_image": "pages/1308.4565v2/page_3.png" } ]