[ { "id": 0, "page": 4, "bounding_box": [ 139.5268300374349, 72.198974609375, 472.4731699625651, 255.51202392578125 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | p{3cm} | p{3cm} | p{3cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} |}\n\\hline\nName & Number of classes & Total number of sample & \\#Input Features\\\\\n\\hline\nExtended Yale Face Dataset (Frontal Pose) & 38 & 2432 & 900 \\\\ \\hline\nExtended Yale Face Dataset (All Poses) & 28 & 11482 & 900 \\\\ \\hline\nNCKU Taiwan Face Dataset & 90 & 3330 & 768 \\\\ \\hline\nMNIST Dataset & 10 & 70000 & 784 \\\\ \\hline\n\\end{tabular}\n \\\\\n\\end{center}\n\\caption{List of datasets used for benchmarking}\n\\label{table:dataset-summary}\n\\end{table}", "extracted_content": [ [ "Name", "Number of\nclasses", "Total number\nof sample", "#Input\nFeatures" ], [ "Extended Yale\nFace Dataset\n(Frontal Pose)", "38", "2432", "900" ], [ "Extended Yale\nFace Dataset\n(All Poses)", "28", "11482", "900" ], [ "NCKU\nTaiwan Face\nDataset", "90", "3330", "768" ], [ "MNIST\nDataset", "10", "70000", "784" ] ], "similarity_score": 0.8833652007648184, "table_image": "images/1607.01354v1/table_0.png", "page_image": "pages/1607.01354v1/page_4.png" }, { "id": 1, "page": 5, "bounding_box": [ 167.8785683768136, 334.4599914550781, 444.1215558733259, 504.2229919433594 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{900}$ & Accuracy in $R^{64}$\\\\\n\\hline\nNeural Network & 75-50-38 & & 98.3\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 60.6\\% & 97.3\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 60.3\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 58.5\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 56.7\\% & 97.5\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Extended Yale B (Frontal) Face data set}\n\\label{table:cropped-yale-res}\n\\end{table}", "extracted_content": [ [ "Classifier", "Setting", "Accuracy\nin R900", "Accuracy\nin R64" ], [ "Neural\nNetwork", "75-50-38", "", "98.3%" ], [ "k-Nearest\nNeighbor", "k=3", "60.6%", "97.3%" ], [ "k-Nearest\nNeighbor", "k=5", "60.3%", "97.5%" ], [ "k-Nearest\nNeighbor", "k=7", "58.5%", "97.5%" ], [ "k-Nearest\nNeighbor", "k=9", "56.7%", "97.5%" ] ], "similarity_score": 0.4260355029585799, "table_image": "images/1607.01354v1/table_1.png", "page_image": "pages/1607.01354v1/page_5.png" }, { "id": 2, "page": 6, "bounding_box": [ 133.33400344848633, 72.198974609375, 478.6657485961914, 171.02899169921875 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1cm} | p{1cm} | p{1cm} | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | }\n\\hline\nStudy & \\#Subjects & \\#Train Images per Subject & \\#Model Params (million) & Accuracy\\\\\n\\hline\nCurrent Paper & 38 & 48 & 0.5 & 98.3\\% \\\\ \\hline\nHinton et. al. \\cite{conf/icml/TangSH12a} & 10 & 7 & 1.3 & 97\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Comparison of results on Extended Yale B (Frontal) data set}\n\\label{table:yale-frontal-compare}\n\\end{table}", "extracted_content": [ [ "Study", "#Subjects", "#Train\nImages per\nSubject", "#Model\nParams\n(million)", "Accuracy" ], [ "Current\nPaper", "38", "48", "0.5", "98.3%" ], [ "Hinton et.\nal. [22]", "10", "7", "1.3", "97%" ] ], "similarity_score": 0.7058823529411765, "table_image": "images/1607.01354v1/table_2.png", "page_image": "pages/1607.01354v1/page_6.png" }, { "id": 3, "page": 7, "bounding_box": [ 167.8785683768136, 72.198974609375, 444.1215558733259, 241.9630126953125 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{900}$ & Accuracy in $R^{64}$\\\\\n\\hline\nNeural Network & 75-50-38 & & 95.7\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 81.6\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 81.3\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 81.0\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 80.5\\% & 95.3\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Extended Yale B (All Pose) face data set}\n\\label{table:yale-all-pose-res}\n\\end{table}", "extracted_content": [ [ "Classifier", "Setting", "Accuracy\nin R900", "Accuracy\nin R64" ], [ "Neural\nNetwork", "75-50-38", "", "95.7%" ], [ "k-Nearest\nNeighbor", "k=3", "81.6%", "95.4%" ], [ "k-Nearest\nNeighbor", "k=5", "81.3%", "95.4%" ], [ "k-Nearest\nNeighbor", "k=7", "81.0%", "95.4%" ], [ "k-Nearest\nNeighbor", "k=9", "80.5%", "95.3%" ] ], "similarity_score": 0.6444007858546169, "table_image": "images/1607.01354v1/table_3.png", "page_image": "pages/1607.01354v1/page_7.png" }, { "id": 4, "page": 7, "bounding_box": [ 167.8785683768136, 277.57000732421875, 444.1215558733259, 447.3340148925781 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{768}$ & Accuracy in $R^{25}$\\\\\n\\hline\nNeural Network & 25-50-90 & & 99.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 97.171\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 94.44\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 91.81\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 89.09\\% & 99.6\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Taiwan Face data set}\n\\label{table:taiwan-res}\n\\end{table}", "extracted_content": [ [ "Classifier", "Setting", "Accuracy\nin R768", "Accuracy\nin R25" ], [ "Neural\nNetwork", "25-50-90", "", "99.5%" ], [ "k-Nearest\nNeighbor", "k=3", "97.171%", "99.6%" ], [ "k-Nearest\nNeighbor", "k=5", "94.44%", "99.6%" ], [ "k-Nearest\nNeighbor", "k=7", "91.81%", "99.6%" ], [ "k-Nearest\nNeighbor", "k=9", "89.09%", "99.6%" ] ], "similarity_score": 0.8008130081300813, "table_image": "images/1607.01354v1/table_4.png", "page_image": "pages/1607.01354v1/page_7.png" }, { "id": 5, "page": 8, "bounding_box": [ 167.8785683768136, 96.70501708984375, 444.1215558733259, 266.468994140625 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{784}$ & Accuracy in $R^{36}$\\\\\n\\hline\nNeural Network & 36-5-10 & & 98.08\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 97.05\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 96.88\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 96.94\\% & 97.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 96.59\\% & 97.6\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on MNIST data set}\n\\label{table:mnist-res}\n\\end{table}", "extracted_content": [ [ "Classifier", "Setting", "Accuracy\nin R784", "Accuracy\nin R36" ], [ "Neural\nNetwork", "36-5-10", "", "98.08%" ], [ "k-Nearest\nNeighbor", "k=3", "97.05%", "97.5%" ], [ "k-Nearest\nNeighbor", "k=5", "96.88%", "97.5%" ], [ "k-Nearest\nNeighbor", "k=7", "96.94%", "97.6%" ], [ "k-Nearest\nNeighbor", "k=9", "96.59%", "97.6%" ] ], "similarity_score": 0.5714285714285714, "table_image": "images/1607.01354v1/table_5.png", "page_image": "pages/1607.01354v1/page_8.png" }, { "id": 6, "page": 8, "bounding_box": [ 160.78020629882812, 368.5159912109375, 451.21979370117185, 523.5339965820312 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1.2cm} | p{1.8cm} | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nStudy & Method & \\#Model Params (million) & Accuracy\\\\\n\\hline\nThis Paper & Discriminative Encoder & 0.23 & 98.08\\% \\\\ \\hline\nHinton et. al. \\cite{journals/jmlr/SalakhutdinovH07} & Autoencoder & 1.7 & 99\\% \\\\ \\hline\nSchmidhuber et. al. \\cite{journals/corr/abs-1003-0358} & Simple Deep Neural Nets + Elastic Distortions & 11.9 mil & 99.65\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Comparison of results on MNIST data set}\n\\label{table:mnist-compare}\n\\end{table}", "extracted_content": [ [ "Study", "Method", "#Model\nParams\n(million)", "Accuracy" ], [ "This Paper", "Discriminative\nEncoder", "0.23", "98.08%" ], [ "Hinton et.\nal. [16]", "Autoencoder", "1.7", "99%" ], [ "Schmidhuber\net. al. [2]", "Simple Deep\nNeural Nets +\nElastic\nDistortions", "11.9 mil", "99.65%" ] ], "similarity_score": 0.6913123844731978, "table_image": "images/1607.01354v1/table_6.png", "page_image": "pages/1607.01354v1/page_8.png" }, { "id": 7, "page": 9, "bounding_box": [ 72.1658312479655, 97.7020263671875, 551.9191487630209, 294.9620056152344 ], "latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1cm} | p{0.5cm}| p{0.65cm}| p{1.05cm}| p{1.05cm} | p{0.45cm} | p{0.45cm} |p{0.45cm}| p{0.45cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{1.5cm} | >{\\centering\\arraybackslash}m{1.5cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} |}\n\\hline\nDataset & Input Space Size & Reduced Space Size & Network (AE) & Network (DE) & IS & PCA & AE & DE\\\\ \\hline\nYale (Frontal Pose) & 900 & 64 & 400-200-64-200-400-900 & 400-200-64-900 & 60.6\\% & 51.4\\% & 82.4\\% & 97.3\\% \\\\ \\hline\nYale (All Poses) & 900 & 64 & 400-200-64-200-400-900 & 400-200-64-900 & 81.6\\% & 74.6\\% & 89.1\\% & 95.4\\% \\\\ \\hline\nTaiwan Face Db & 768 & 25 & 196-64-25-64-196-768 & 196-64-25-768 & 97.1\\% & 96.9\\% & 96.8\\% & 99.6\\% \\\\ \\hline\nMNIST & 784 & 36 & 225-100-36-100-225-784 & 225-100-36-784 & 97.0\\% & 97.3\\% & 97.0\\% & 97.5\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results of 3-NN classifier on all datasets using various dimensionality reduction approaches: IS (original input space), PCA (principal component analysis), AE (autoencoder), DE (discriminative encoder)}\n\\label{table:summary-res}\n\\end{table}", "extracted_content": [ [ "Dataset", "Input\nSpace\nSize", "Reduced\nSpace\nSize", "Network\n(AE)", "Network\n(DE)", "IS", "PCA", "AE", "DE" ], [ "Yale\n(Frontal\nPose)", "900", "64", "400-200-\n64-200-\n400-900", "400-200-\n64-900", "60.6%", "51.4%", "82.4%", "97.3%" ], [ "Yale (All\nPoses)", "900", "64", "400-200-\n64-200-\n400-900", "400-200-\n64-900", "81.6%", "74.6%", "89.1%", "95.4%" ], [ "Taiwan\nFace Db", "768", "25", "196-64-25-\n64-196-768", "196-64-25-\n768", "97.1%", "96.9%", "96.8%", "99.6%" ], [ "MNIST", "784", "36", "225-100-\n36-100-\n225-784", "225-100-\n36-784", "97.0%", "97.3%", "97.0%", "97.5%" ] ], "similarity_score": 0.4491362763915547, "table_image": "images/1607.01354v1/table_7.png", "page_image": "pages/1607.01354v1/page_9.png" } ]