[ { "id": 0, "page": 18, "bounding_box": [ 323.3190002441406, 67.260009765625, 525.5609893798828, 117.072998046875 ], "latex_content": "\\begin{table}[t]\n\t\\centering\n\t\\begin{tabular}{|c|c|}\n\t\t\\hline\n\t\tHypothesis class & Rademacher Complexity\\\\\\hline\n\t\t$\\B_q(\\norm{\\W}_q)$ & $2\\norm{\\X}_p\\norm{\\W}_q\\sqrt{\\frac{p - 1}{n}}$\\\\\\hline\n\t\t$\\B_1(\\norm{\\W}_1)$& $2\\norm{\\X}_\\infty \\norm{\\W}_1\\sqrt{\\frac{e\\log d}{n}}$\\\\\\hline\n\t\\end{tabular}\n\t\\caption{Rademacher complexity bounds for AUC maximization. We have $1/p+1/q = 1$ and $q > 1$.}\n\t\\label{tab:rad-bounds-auc}\n\\end{table}", "extracted_content": [ [ "Hypothesis class", "Rademacher Complexity" ], [ "( )\nBq \u2225W\u2225q", "q\n2 p\u22121\n\u2225X\u2225p \u2225W\u2225q n" ], [ "( )\nB1 \u2225W\u22251", "q\n2 e log d\n\u2225X\u2225 \u221e\u2225W\u22251 n" ] ], "similarity_score": 0.4713804713804714, "table_image": "images/1305.2505v1/table_0.png", "page_image": "pages/1305.2505v1/page_18.png" }, { "id": 1, "page": 20, "bounding_box": [ 68.20600128173828, 67.260009765625, 276.67498779296875, 111.15899658203125 ], "latex_content": "\\begin{table}[t]\n\t\\centering\n\t\\begin{tabular}{|c|c|}\n\t\t\\hline\n\t\tHypothesis Class & Rademacher Avg. Bound\\\\\\hline\n\t\t$\\S_2(1)$ & $\\kappa^2\\sqrt{\\frac{p}{n}}$\\\\\\hline\n\t\t$\\Delta(1)$ & $\\kappa^2\\sqrt{\\frac{e\\log p}{n}}$\\\\\\hline\n\t\\end{tabular}\n\t\\caption{Rademacher complexity bounds for Multiple kernel learning}\n\t\\label{tab:mkl-rad-bounds}\n\\end{table}", "extracted_content": [ [ "Hypothesis Class", "Rademacher Avg. Bound" ], [ "(1)\nS2", "\u03ba2pp\nn" ], [ "\u2206(1)", "q\n\u03ba2 e log p\nn" ] ], "similarity_score": 0.5064377682403434, "table_image": "images/1305.2505v1/table_1.png", "page_image": "pages/1305.2505v1/page_20.png" } ]