[ { "id": 0, "page": 7, "bounding_box": [ 72.83499908447266, 146.5009765625, 503.1652038574219, 231.781005859375 ], "latex_content": "\\begin{table}\n \\centering\n \\begin{tabular}{|c|p{5cm}|p{5cm}|}\n \\hline\n Concept & SQL & \\R (\\cmd{dplyr}) \\\\\n \\hline\n Filter by rows \\& columns \n & \\cmd{SELECT col1, col2 FROM $a$ WHERE col3 = 'x'} \n & \\cmd{select(filter($a$, col3 == \"x\"), col1, col2)} \\\\\n \\hline\n Aggregate by rows \n & \\cmd{SELECT id, sum(col1) as total FROM $a$ GROUP BY id} \n & \\cmd{summarise(group\\_by($a$, id), total = sum(col1))} \\\\\n% & \\cmd{ddply($a$[,c(id, col1)], $\\sim$ id, sum)} \\\\\n \\hline\n Combine two tables \n & \\cmd{SELECT * FROM $a$ JOIN $b$ ON a.id = b.id} \n & \\cmd{inner\\_join(x=$a$, y=$b$, by=\"id\"))} \\\\\n \\hline\n \\end{tabular}\n \\caption{Conceptually analogous SQL and \\R commands. Suppose $a$ and $b$ are SQL tables or \\R \\cmd{data.frame}s}\n \\label{tab:sql-r}\n\\end{table}", "extracted_content": [ [ "Concept", "SQL", "R (dplyr)" ], [ "Filter by rows & columns", "SELECT col1, col2 FROM a\nWHERE col3 = \u2019x\u2019", "select(filter(a, col3 ==\n\"x\"), col1, col2)" ], [ "Aggregate by rows", "SELECT id, sum(col1) as\ntotal FROM a GROUP BY id", "summarise(group by(a, id),\ntotal = sum(col1))" ], [ "Combine two tables", "SELECT * FROM a JOIN b ON\na.id = b.id", "inner join(x=a, y=b,\nby=\"id\"))" ] ], "similarity_score": 0.815, "table_image": "images/1503.05570v1/table_0.png", "page_image": "pages/1503.05570v1/page_7.png" } ]